Skip to main content

The Molecular Evolution of Breast Cancer Precursors and Risk Indicators

  • Chapter
  • First Online:

Abstract

The greater availability of data on the molecular features of benign breast lesions and breast cancer precursor lesion has changed our perception of the pathways of breast cancer progression. It is evident that breast cancer can be classified into distinct entities on the basis of ER expression; the type and pattern of genetic aberrations found in ER positive cancers are distinct from those found in ER negative cancers. Furthermore, the pattern and complexity of genetic aberrations found in ER positive cancers is associated with histological grade. Furthermore, some of the hallmark genetic aberrations typically found in low grade ER positive breast cancers (i.e. gains of 1q coupled with deletions of 16q) have been identified in a significant subset of high grade ER positive breast cancers. This suggests that at least a subset of high grade ER positive breast cancers may originate from low grade lesions. In contrast, ER negative cancers are more heterogeneous, but do not harbour the hallmark genetic aberrations usually found in low grade breast cancers. In this chapter, we address the molecular features of breast cancer risk indicators and breast cancer precursor lesions, discuss the mechanisms of progression from in situ to invasive disease and propose an updated model of breast cancer evolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Fatah TM, Powe DG, Hodi Z et al (2007) High frequency of coexistence of columnar cell lesions, lobular neoplasia, and low grade ductal carcinoma in situ with invasive tubular carcinoma and invasive lobular carcinoma. Am J Surg Pathol 31:417–426

    PubMed  Google Scholar 

  • Abdel-Fatah TM, Powe DG, Hodi Z et al (2008) Morphologic and molecular evolutionary pathways of low nuclear grade invasive breast cancers and their putative precursor lesions: further evidence to support the concept of low nuclear grade breast neoplasia family. Am J Surg Pathol 32:513–523

    PubMed  Google Scholar 

  • Acs G, Simpson JF, Bleiweiss IJ et al (2003) Microglandular adenosis with transition into adenoid cystic carcinoma of the breast. Am J Surg Pathol 27:1052–1060

    PubMed  Google Scholar 

  • Adelaide J, Finetti P, Bekhouche I et al (2007) Integrated profiling of basal and luminal breast cancers. Cancer Res 67:11565–11575

    PubMed  CAS  Google Scholar 

  • Allred DC, Wu Y, Mao S et al (2008) Ductal carcinoma in situ and the emergence of diversity during breast cancer evolution. Clin Cancer Res 14:370–378

    PubMed  CAS  Google Scholar 

  • Andersen JA, Gram JB (1984). Radial scar in the female breast. A long-term follow-up study of 32 cases. Cancer 53:2557–2560

    PubMed  CAS  Google Scholar 

  • Anderson TJ, Battersby S (1985) Radial scars of benign and malignant breasts: comparative features and significance. J Pathol 147:23–32

    PubMed  CAS  Google Scholar 

  • Andre F, Job B, Dessen P et al (2009) Molecular characterization of breast cancer with high-resolution oligonucleotide comparative genomic hybridization array. Clin Cancer Res 15:441–451

    PubMed  CAS  Google Scholar 

  • Arpino G, Laucirica R, Elledge RM (2005) Premalignant and in situ breast disease: biology and clinical implications. Ann Intern Med 143:446–457

    PubMed  Google Scholar 

  • Arriola E, Lambros MB, Jones C et al (2007) Evaluation of Phi29-based whole-genome amplification for microarray-based comparative genomic hybridisation. Lab Invest 87:75–83

    PubMed  CAS  Google Scholar 

  • Aubele MM, Cummings MC, Mattis AE et al (2000) Accumulation of chromosomal imbalances from intraductal proliferative lesions to adjacent in situ and invasive ductal breast cancer. Diagn Mol Pathol 9:14–19

    PubMed  CAS  Google Scholar 

  • Aulmann S, Elsawaf Z, Penzel R, Schirmacher P, Sinn HP (2009) Invasive tubular carcinoma of the breast frequently is clonally related to flat epithelial atypia and low-grade ductal carcinoma in situ. Am J Surg Pathol 33:1646–1653

    PubMed  Google Scholar 

  • Azzopardi JG (1979) Problems in breast pathology. WB Saunders, London

    Google Scholar 

  • Balleine RL, Webster LR, Davis S et al (2008) Molecular grading of ductal carcinoma in situ of the breast. Clin Cancer Res 14:8244–8252

    PubMed  CAS  Google Scholar 

  • Bergamaschi A, Kim YH, Wang P et al (2006) Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes Chromosomes Cancer 45:1033–1040

    PubMed  CAS  Google Scholar 

  • Bodian CA, Perzin KH, Lattes R, Hoffmann P, Abernathy TG (1993) Prognostic significance of benign proliferative breast disease. Cancer 71:3896–3907

    PubMed  CAS  Google Scholar 

  • Boecker W, Buerger H, Schmitz K et al (2001) Ductal epithelial proliferations of the breast: a biological continuum? Comparative genomic hybridization and high-molecular-weight cytokeratin expression patterns. J Pathol 195:415–421

    PubMed  CAS  Google Scholar 

  • Boldt V, Stacher E, Halbwedl I et al (2010) Positioning of necrotic lobular intraepithelial neoplasias (LIN, grade 3) within the sequence of breast carcinoma progression. Genes Chromosomes Cancer 49:463–470

    PubMed  CAS  Google Scholar 

  • Bonner RF, Emmert-Buck M, Cole K et al (1997) Laser capture microdissection: molecular analysis of tissue. Science 278:1481–1483

    PubMed  CAS  Google Scholar 

  • Boulos FI, Dupont WD, Simpson JF et al (2008) Histologic associations and long-term cancer risk in columnar cell lesions of the breast: a retrospective cohort and a nested case-control study. Cancer 113:2415–2421

    PubMed  Google Scholar 

  • Brandt SM, Young GQ, Hoda SA (2008) The “Rosen Triad”: tubular carcinoma, lobular carcinoma in situ, and columnar cell lesions. Adv Anat Pathol 15:140–146

    PubMed  Google Scholar 

  • Buerger H, Otterbach F, Simon R et al (1999a) Comparative genomic hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. J Pathol 187:396–402

    CAS  Google Scholar 

  • Buerger H, Otterbach F, Simon R et al (1999b) Different genetic pathways in the evolution of invasive breast cancer are associated with distinct morphological subtypes. J Pathol 189:521–526

    CAS  Google Scholar 

  • Buerger H, Simon R, Schafer KL et al (2000) Genetic relation of lobular carcinoma in situ, ductal carcinoma in situ, and associated invasive carcinoma of the breast. Mol Pathol 53:118–121

    PubMed  CAS  Google Scholar 

  • Buerger H, Mommers EC, Littmann R et al (2001a) Ductal invasive G2 and G3 carcinomas of the breast are the end stages of at least two different lines of genetic evolution. J Pathol 194:165–170

    CAS  Google Scholar 

  • Buerger H, Schmidt H, Beckmann A et al (2001b) Genetic characterisation of invasive breast cancer: a comparison of CGH and PCR based multiplex microsatellite analysis. J Clin Pathol 54:836–840

    CAS  Google Scholar 

  • Campbell I, Polyak K, Haviv I (2009) Clonal mutations in the cancer-associated fibroblasts: the case against genetic coevolution. Cancer Res 69:6765–6768 (Discussion 9)

    PubMed  CAS  Google Scholar 

  • Carley AM, Chivukula M, Carter GJ, Karabakhtsian RG, Dabbs DJ (2008) Frequency and clinical significance of simultaneous association of lobular neoplasia and columnar cell alterations in breast tissue specimens. Am J Clin Pathol 130:254–258

    PubMed  CAS  Google Scholar 

  • Chen YY, Hwang ES, Roy R et al (2009) Genetic and phenotypic characteristics of pleomorphic lobular carcinoma in situ of the breast. Am J Surg Pathol 33:1683–1694

    PubMed  Google Scholar 

  • Chin K, DeVries S, Fridlyand J et al (2006) Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10:529–541

    PubMed  CAS  Google Scholar 

  • Chin SF, Teschendorff AE, Marioni JC et al (2007) High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biol 8:R215

    PubMed  Google Scholar 

  • Chivukula M, Haynik DM, Brufsky A, Carter G, Dabbs DJ (2008) Pleomorphic lobular carcinoma in situ (PLCIS) on breast core needle biopsies: clinical significance and immunoprofile. Am J Surg Pathol 32:1721–1726

    PubMed  Google Scholar 

  • Clement PB, Azzopardi JG (1983) Microglandular adenosis of the breast—a lesion simulating tubular carcinoma. Histopathology 7:169–180

    PubMed  CAS  Google Scholar 

  • Cleton-Jansen AM, Buerger H, Haar N et al (2004) Different mechanisms of chromosome 16 loss of heterozygosity in well- versus poorly differentiated ductal breast cancer. Genes Chromosomes Cancer 41:109–116

    PubMed  CAS  Google Scholar 

  • Dabbs DJ, Carter G, Fudge M et al (2006) Molecular alterations in columnar cell lesions of the breast. Mod Pathol 19:344–349

    PubMed  CAS  Google Scholar 

  • Deng G, Lu Y, Zlotnikov G, Thor AD, Smith HS (1996) Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science 274:2057–2059

    PubMed  CAS  Google Scholar 

  • Derksen PW, Liu X, Saridin F et al (2006) Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10:437–449

    PubMed  CAS  Google Scholar 

  • Desmedt C, Haibe-Kains B, Wirapati P et al (2008) Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res 14:5158–5165

    PubMed  CAS  Google Scholar 

  • Ding L, Ellis MJ, Li S et al (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464:999–1005

    PubMed  CAS  Google Scholar 

  • Doane AS, Danso M, Lal P et al (2006) An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene 25:3994–4008

    PubMed  CAS  Google Scholar 

  • Droufakou S, Deshmane V, Roylance R et al (2001) Multiple ways of silencing E-cadherin gene expression in lobular carcinoma of the breast. Int J Cancer 92:404–408

    PubMed  CAS  Google Scholar 

  • Dupont WD, Page DL (1985) Risk factors for breast cancer in women with proliferative breast disease. N Engl J Med 312:146–151

    PubMed  CAS  Google Scholar 

  • Dupont WD, Parl FF, Hartmann WH et al (1993) Breast cancer risk associated with proliferative breast disease and atypical hyperplasia. Cancer 71:1258–1265

    PubMed  CAS  Google Scholar 

  • Eusebi V, Magalhaes F, Azzopardi JG (1992) Pleomorphic lobular carcinoma of the breast: an aggressive tumor showing apocrine differentiation. Hum Pathol 23:655–662

    PubMed  CAS  Google Scholar 

  • Farmer P, Bonnefoi H, Becette V et al (2005) Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 24:4660–4671

    PubMed  CAS  Google Scholar 

  • Farrand K, Jovanovic L, Delahunt B et al (2002) Loss of heterozygosity studies revisited: prior quantification of the amplifiable DNA content of archival samples improves efficiency and reliability. J Mol Diagn 4:150–158

    PubMed  CAS  Google Scholar 

  • Feeley L, Quinn CM (2008) Columnar cell lesions of the breast. Histopathology 52:11–19

    PubMed  CAS  Google Scholar 

  • Fisher ER, Palekar AS, Kotwal N, Lipana N (1979) A nonencapsulated sclerosing lesion of the breast. Am J Clin Pathol 71:240–246

    PubMed  CAS  Google Scholar 

  • Fitzgibbons PL, Henson DE, Hutter RV (1998) Benign breast changes and the risk for subsequent breast cancer: an update of the 1985 consensus statement. Cancer Committee of the College of American Pathologists. Arch Pathol Lab Med 122:1053–1055

    PubMed  CAS  Google Scholar 

  • Foote FW, Stewart FW (1941) Lobular carcinoma in situ: a rare form of mammary carcinoma. Am J Pathol 17:9

    Google Scholar 

  • Fraser JL, Raza S, Chorny K, Connolly JL, Schnitt SJ (1998) Columnar alteration with prominent apical snouts and secretions: a spectrum of changes frequently present in breast biopsies performed for microcalcifications. Am J Surg Pathol 22:1521–1527

    PubMed  CAS  Google Scholar 

  • Geyer FC, Kushner YB, Lambros MB et al (2009a) Microglandular adenosis or microglandular adenoma? A molecular genetic analysis of a case associated with atypia and invasive carcinoma. Histopathology 55:732–743

    Google Scholar 

  • Geyer FC, Lopez-Garcia MA, Lambros MB, Reis-Filho JS (2009b) Genetic characterisation of breast cancer and implications for clinical management. J Cell Mol Med 13:4090–4103

    CAS  Google Scholar 

  • Geyer FC, Weigelt B, Natrajan R et al (2010) Molecular analysis reveals a genetic basis for the phenotypic diversity of metaplastic breast carcinomas. J Pathol 220:562–573

    PubMed  CAS  Google Scholar 

  • Goldstein NS, O’Malley BA (1997) Cancerization of small ectatic ducts of the breast by ductal carcinoma in situ cells with apocrine snouts: a lesion associated with tubular carcinoma. Am J Clin Pathol 107:561–566

    PubMed  CAS  Google Scholar 

  • Gong G, DeVries S, Chew KL et al (2001) Genetic changes in paired atypical and usual ductal hyperplasia of the breast by comparative genomic hybridization. Clin Cancer Res 7:2410–2414

    PubMed  CAS  Google Scholar 

  • Hanby AM, Hughes TA (2008) In situ and invasive lobular neoplasia of the breast. Histopathology 52:58–66

    PubMed  CAS  Google Scholar 

  • Hannemann J, Velds A, Halfwerk JB et al (2006) Classification of ductal carcinoma in situ by gene expression profiling. Breast Cancer Res 8:R61

    PubMed  Google Scholar 

  • Hicks J, Krasnitz A, Lakshmi B et al (2006) Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res 16:1465–1479

    PubMed  CAS  Google Scholar 

  • Holliday C, Rummel S, Hooke JA et al (2009) Genomic instability in the breast microenvironment? A critical evaluation of the evidence. Expert Rev Mol Diagn 9:667–678

    PubMed  CAS  Google Scholar 

  • Hu Z, Fan C, Oh DS et al (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genom 7:96

    Google Scholar 

  • Hughes LL, Wang M, Page DL et al (2009) Local excision alone without irradiation for ductal carcinoma in situ of the breast: a trial of the Eastern Cooperative Oncology Group. J Clin Oncol 27:5319–5324

    PubMed  Google Scholar 

  • Hwang ES, Nyante SJ, Yi Chen Y et al (2004) Clonality of lobular carcinoma in situ and synchronous invasive lobular carcinoma. Cancer 100:2562–2572

    PubMed  Google Scholar 

  • Haagensen CD, Lane N, Lattes R, Bodian C (1978) Lobular neoplasia (so-called lobular carcinoma in situ) of the breast. Cancer 42:737–769

    PubMed  CAS  Google Scholar 

  • International network of cancer genome projects (2010) Nature 464:993–998

    Google Scholar 

  • Iqbal M, Shoker BS, Foster CS et al (2002) Molecular and genetic abnormalities in radial scar. Hum Pathol 33:715–722

    PubMed  CAS  Google Scholar 

  • Jacobs TW, Byrne C, Colditz G, Connolly JL, Schnitt SJ (1999) Radial scars in benign breast-biopsy specimens and the risk of breast cancer. N Engl J Med 340:430–436

    PubMed  CAS  Google Scholar 

  • Jensen RA, Dupont WD, Page DL (1993) Diagnostic criteria and cancer risk of proliferative breast lesions. J Cell Biochem Suppl 17G:59–64

    PubMed  CAS  Google Scholar 

  • Jones BM, Bradbeer JW (1980) The presentation and progress of macroscopic breast cysts. Br J Surg 67:669–671

    PubMed  CAS  Google Scholar 

  • Jones C, Damiani S, Wells D et al (2001) Molecular cytogenetic comparison of apocrine hyperplasia and apocrine carcinoma of the breast. Am J Pathol 158:207–214

    PubMed  CAS  Google Scholar 

  • Jones C, Merrett S, Thomas VA, Barker TH, Lakhani SR (2003) Comparative genomic hybridization analysis of bilateral hyperplasia of usual type of the breast. J Pathol 199:152–156

    PubMed  CAS  Google Scholar 

  • Kamel OW, Kempson RL, Hendrickson MR (1992) In situ proliferative epithelial lesions of the breast. Pathology (Phila) 1:65–102

    CAS  Google Scholar 

  • Khalifeh IM, Albarracin C, Diaz LK et al (2008) Clinical, histopathologic, and immunohistochemical features of microglandular adenosis and transition into in situ and invasive carcinoma. Am J Surg Pathol 32:544–552

    PubMed  Google Scholar 

  • Koenig C, Dadmanesh F, Bratthauer GL, Tavassoli FA (2000) Carcinoma arising in microglandular adenosis: an immunohistochemical analysis of 20 intraepithelial and invasive neoplasms. Int J Surg Pathol 8:303–315

    PubMed  Google Scholar 

  • Lacroix M, Toillon RA, Leclercq G (2004) Stable ‘portrait’ of breast tumors during progression: data from biology, pathology and genetics. Endocr Relat Cancer 11:497–522

    PubMed  CAS  Google Scholar 

  • Lakhani SR, Collins N, Stratton MR, Sloane JP (1995) Atypical ductal hyperplasia of the breast: clonal proliferation with loss of heterozygosity on chromosomes 16q and 17p. J Clin Pathol 48:611–615

    PubMed  CAS  Google Scholar 

  • Lakhani SR, Slack DN, Hamoudi RA et al (1996) Detection of allelic imbalance indicates that a proportion of mammary hyperplasia of usual type are clonal, neoplastic proliferations. Lab Invest 74:129–135

    PubMed  CAS  Google Scholar 

  • Lakhani SR, Chaggar R, Davies S et al (1999) Genetic alterations in ‘normal’ luminal and myoepithelial cells of the breast. J Pathol 189:496–503

    PubMed  CAS  Google Scholar 

  • Lakhani SR, Audretsch W, Cleton-Jensen AM et al (2006) The management of lobular carcinoma in situ (LCIS). Is LCIS the same as ductal carcinoma in situ (DCIS)? Eur J Cancer 42:2205–2211

    PubMed  Google Scholar 

  • Lambros MB, Natrajan R, Reis-Filho JS (2007). Chromogenic and fluorescent in situ hybridization in breast cancer. Hum Pathol 38:1105–1122

    PubMed  CAS  Google Scholar 

  • Larson PS, de las Morenas A, Cupples LA, Huang K, Rosenberg CL (1998) Genetically abnormal clones in histologically normal breast tissue. Am J Pathol 152:1591–1598

    PubMed  CAS  Google Scholar 

  • Larson PS, de las Morenas A, Bennett SR, Cupples LA, Rosenberg CL (2002) Loss of heterozygosity or allele imbalance in histologically normal breast epithelium is distinct from loss of heterozygosity or allele imbalance in co-existing carcinomas. Am J Pathol 161:283–290

    PubMed  Google Scholar 

  • Lininger RA, Zhuang Z, Man Y et al (1999) Loss of heterozygosity is detected at chromosomes 1p35-36 (NB), 3p25 (VHL), 16p13 (TSC2/PKD1), and 17p13 (TP53) in microdissected apocrine carcinomas of the breast. Mod Pathol 12:1083–1089

    PubMed  CAS  Google Scholar 

  • Loo LW, Grove DI, Williams EM et al (2004) Array comparative genomic hybridization analysis of genomic alterations in breast cancer subtypes. Cancer Res 64:8541–8549

    PubMed  CAS  Google Scholar 

  • Lu YJ, Osin P, Lakhani SR et al (1998) Comparative genomic hybridization analysis of lobular carcinoma in situ and atypical lobular hyperplasia and potential roles for gains and losses of genetic material in breast neoplasia. Cancer Res 58:4721–4727

    PubMed  CAS  Google Scholar 

  • Ma XJ, Salunga R, Tuggle JT et al (2003) Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci U S A 100:5974–5479

    PubMed  CAS  Google Scholar 

  • Mackay A, Tamber N, Fenwick K et al (2009) A high-resolution integrated analysis of genetic and expression profiles of breast cancer cell lines. Breast Cancer Res Treat 118:481–498

    PubMed  CAS  Google Scholar 

  • Manfrin E, Remo A, Falsirollo F, Reghellin D, Bonetti F (2008) Risk of neoplastic transformation in asymptomatic radial scar. Analysis of 117 cases. Breast Cancer Res Treat 107:371–377

    PubMed  Google Scholar 

  • Martel M, Barron-Rodriguez P, Tolgay Ocal I, Dotto J, Tavassoli FA (2007) Flat DIN 1 (flat epithelial atypia) on core needle biopsy: 63 cases identified retrospectively among 1,751 core biopsies performed over an 8-year period (1992–1999). Virchows Arch 451:883–891

    PubMed  Google Scholar 

  • Mastracci TL, Shadeo A, Colby SM et al (2006) Genomic alterations in lobular neoplasia: a microarray comparative genomic hybridization signature for early neoplastic proliferationin the breast. Genes Chromosomes Cancer 45:1007–1017

    PubMed  CAS  Google Scholar 

  • McLaren BK, Gobbi H, Schuyler PA et al (2005) Immunohistochemical expression of estrogen receptor in enlarged lobular units with columnar alteration in benign breast biopsies: a nested case-control study. Am J Surg Pathol 29:105–108

    PubMed  Google Scholar 

  • McLaren BK, Schuyler PA, Sanders ME et al (2006) Excellent survival, cancer type, and Nottingham grade after atypical lobular hyperplasia on initial breast biopsy. Cancer 107:1227–1233

    PubMed  Google Scholar 

  • Melchor L, Honrado E, Huang J et al (2007) Estrogen receptor status could modulate the genomic pattern in familial and sporadic breast cancer. Clin Cancer Res 13:7305–7313

    PubMed  CAS  Google Scholar 

  • Melchor L, Honrado E, Garcia MJ et al (2008) Distinct genomic aberration patterns are found in familial breast cancer associated with different immunohistochemical subtypes. Oncogene 27:3165–3175

    PubMed  CAS  Google Scholar 

  • Middleton LP, Palacios DM, Bryant BR et al (2000) Pleomorphic lobular carcinoma: morphology, immunohistochemistry, and molecular analysis. Am J Surg Pathol 24:1650–1656

    PubMed  CAS  Google Scholar 

  • Moinfar F, Man YG, Arnould L et al (2000a) Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res 60:2562–2566

    CAS  Google Scholar 

  • Moinfar F, Man YG, Bratthauer GL, Ratschek M, Tavassoli FA (2000b) Genetic abnormalities in mammary ductal intraepithelial neoplasia-flat type (“clinging ductal carcinoma in situ”): a simulator of normal mammary epithelium. Cancer 88:2072–2081

    CAS  Google Scholar 

  • Morandi L, Marucci G, Foschini MP et al (2006) Genetic similarities and differences between lobular in situ neoplasia (LN) and invasive lobular carcinoma of the breast. Virchows Arch 449:14–23

    PubMed  Google Scholar 

  • Natrajan R, Lambros MB, Rodriguez-Pinilla SM et al (2009a) Tiling path genomic profiling of grade 3 invasive ductal breast cancers. Clin Cancer Res 15:2711–2722

    CAS  Google Scholar 

  • Natrajan R, Weigelt B, Mackay A et al (2009b) An integrative genomic and transcriptomic analysis reveals molecular pathways and networks regulated by copy number aberrations in basal-like, HER2 and luminal cancers. Breast Cancer Res Treat 121:575–589

    Google Scholar 

  • Natrajan R, Lambros MB, Geyer FC et al (2009c) Loss of 16q in high grade breast cancer is associated with estrogen receptor status: evidence for progression in tumors with a luminal phenotype? Genes Chromosomes Cancer 48:351–365

    CAS  Google Scholar 

  • Nielsen M, Christensen L, Andersen J (1987) Radial scars in women with breast cancer. Cancer 59:1019–1025

    PubMed  CAS  Google Scholar 

  • Nikolsky Y, Sviridov E, Yao J et al (2008) Genome-wide functional synergy between amplified and mutated genes in human breast cancer. Cancer Res 68:9532–9540

    PubMed  CAS  Google Scholar 

  • Novelli M, Cossu A, Oukrif D et al (2003) X-inactivation patch size in human female tissue confounds the assessment of tumor clonality. Proc Natl Acad Sci U S A 100:3311–3314

    PubMed  CAS  Google Scholar 

  • Nyante SJ, Devries S, Chen YY, Hwang ES (2004) Array-based comparative genomic hybridization of ductal carcinoma in situ and synchronous invasive lobular cancer. Hum Pathol 35:759–763

    PubMed  CAS  Google Scholar 

  • O’Connell P, Pekkel V, Fuqua SA et al (1998) Analysis of loss of heterozygosity in 399 premalignant breast lesions at 15 genetic loci. J Natl Cancer Inst 90:697–703

    PubMed  Google Scholar 

  • O’Malley FP, Bane A (2008) An update on apocrine lesions of the breast. Histopathology 52:3–10

    PubMed  Google Scholar 

  • O’Malley FP, Mohsin SK, Badve S et al (2006) Interobserver reproducibility in the diagnosis of flat epithelial atypia of the breast. Mod Pathol 19:172–179

    PubMed  Google Scholar 

  • Otterbach F, Bankfalvi A, Bergner S et al (2000) Cytokeratin 5/6 immunohistochemistry assists the differential diagnosis of atypical proliferations of the breast. Histopathology 37:232–240

    PubMed  CAS  Google Scholar 

  • Oyama T, Maluf H, Koerner F (1999) Atypical cystic lobules: an early stage in the formation of low-grade ductal carcinoma in situ. Virchows Arch 435:413–421

    PubMed  CAS  Google Scholar 

  • Page DL, Dupont WD (1990) Anatomic markers of human premalignancy and risk of breast cancer. Cancer 66:1326–1335

    PubMed  CAS  Google Scholar 

  • Page DL, Dupont WD (1991) Proliferative breast disease: diagnosis and implications. Science 253:915–916

    PubMed  CAS  Google Scholar 

  • Page DL, Dupont WD (1992) Indicators of increased breast cancer risk in humans. J Cell Biochem Suppl 16G:175–182

    PubMed  CAS  Google Scholar 

  • Page DL, Dupont WD (1998) Benign breast diseases and premalignant breast disease. Arch Pathol Lab Med 122:1048–1050

    PubMed  CAS  Google Scholar 

  • Page DL, Dupont WD, Rogers LW, Landenberger M (1982) Intraductal carcinoma of the breast: follow-up after biopsy only. Cancer 49:751–758

    PubMed  CAS  Google Scholar 

  • Page DL, Dupont WD, Rogers LW, Rados MS (1985) Atypical hyperplastic lesions of the female breast. A long-term follow-up study. Cancer 55:2698–2708

    PubMed  CAS  Google Scholar 

  • Page DL, Dupont WD, Rogers LW (1988) Ductal involvement by cells of atypical lobular hyperplasia in the breast: a long-term follow-up study of cancer risk. Hum Pathol 19:201–207

    PubMed  CAS  Google Scholar 

  • Page DL, Dupont WD, Jensen RA (1996) Papillary apocrine change of the breast: associations with atypical hyperplasia and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 5:29–32

    PubMed  CAS  Google Scholar 

  • Page DL, Schuyler PA, Dupont WD et al (2003) Atypical lobular hyperplasia as a unilateral predictor of breast cancer risk: a retrospective cohort study. Lancet 361:125–129

    PubMed  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    PubMed  CAS  Google Scholar 

  • Pinder SE, Reis-Filho JS (2007) Non-operative breast pathology: columnar cell lesions. J Clin Pathol 60:1307–1312

    PubMed  CAS  Google Scholar 

  • Porter D, Lahti-Domenici J, Keshaviah A et al (2003) Molecular markers in ductal carcinoma in situ of the breast. Mol Cancer Res 1:362–375

    PubMed  CAS  Google Scholar 

  • Rakha EA, Lee AH, Evans AJ et al (2010) Tubular carcinoma of the breast: further evidence to support its excellent prognosis. J Clin Oncol 28:99–104

    PubMed  Google Scholar 

  • Reis-Filho JS, Lakhani SR (2003) The diagnosis and management of pre-invasive breast disease: genetic alterations in pre-invasive lesions. Breast Cancer Res 5:313–319

    PubMed  CAS  Google Scholar 

  • Reis-Filho JS, Pinder SE (2007) Non-operative breast pathology: lobular neoplasia. J Clin Pathol 60:1321–1327

    PubMed  Google Scholar 

  • Reis-Filho JS, Simpson PT, Gale T, Lakhani SR (2005a) The molecular genetics of breast cancer: the contribution of comparative genomic hybridization. Pathol Res Pract 201:713–725

    Google Scholar 

  • Reis-Filho JS, Simpson PT, Jones C et al (2005b) Pleomorphic lobular carcinoma of the breast: role of comprehensive molecular pathology in characterization of an entity. J Pathol 207:1–13

    CAS  Google Scholar 

  • Rennstam K, Ahlstedt-Soini M, Baldetorp B et al (2003) Patterns of chromosomal imbalances defines subgroups of breast cancer with distinct clinical features and prognosis. A study of 305 tumors by comparative genomic hybridization. Cancer Res 63:8861–8868

    PubMed  CAS  Google Scholar 

  • Rosen PP (1983) Microglandular adenosis. A benign lesion simulating invasive mammary carcinoma. Am J Surg Pathol 7:137–144

    CAS  Google Scholar 

  • Rosen P (ed) (2001) Rosen’s breast pathology, 2nd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Rosenblum MK, Purrazzella R, Rosen PP (1986) Is microglandular adenosis a precancerous disease? A study of carcinoma arising therein. Am J Surg Pathol 10:237–245

    PubMed  CAS  Google Scholar 

  • Roylance R, Gorman P, Harris W et al (1999) Comparative genomic hybridization of breast tumors stratified by histological grade reveals new insights into the biological progression of breast cancer. Cancer Res 59:1433–1436

    PubMed  CAS  Google Scholar 

  • Roylance R, Gorman P, Papior T et al (2006) A comprehensive study of chromosome 16q in invasive ductal and lobular breast carcinoma using array CGH. Oncogene 25:6544–6553

    PubMed  CAS  Google Scholar 

  • Sanders ME, Schuyler PA, Dupont WD, Page DL (2005) The natural history of low-grade ductal carcinoma in situ of the breast in women treated by biopsy only revealed over 30 years of long-term follow-up. Cancer 103:2481–2484

    PubMed  Google Scholar 

  • Sanders ME, Page DL, Simpson JF et al (2006) Interdependence of radial scar and proliferative disease with respect to invasive breast carcinoma risk in patients with benign breast biopsies. Cancer 106:1453–1461

    PubMed  Google Scholar 

  • Sarrio D, Moreno-Bueno G, Hardisson D et al (2003) Epigenetic and genetic alterations of APC and CDH1 genes in lobular breast cancer: relationships with abnormal E-cadherin and catenin expression and microsatellite instability. Int J Cancer 106:208–215

    PubMed  CAS  Google Scholar 

  • Schnitt SJ (2003) The diagnosis and management of pre-invasive breast disease: flat epithelial atypia—classification, pathologic features and clinical significance. Breast Cancer Res 5:263–268

    PubMed  Google Scholar 

  • Schnitt SJ, Morrow M (1999) Lobular carcinoma in situ: current concepts and controversies. Semin Diagn Pathol 16:209–223

    PubMed  CAS  Google Scholar 

  • Schnitt SJ, Vincent-Salomon A (2003) Columnar cell lesions of the breast. Adv Anat Pathol 10:113–124

    PubMed  Google Scholar 

  • Selim AG, Wells CA (1999) Immunohistochemical localisation of androgen receptor in apocrine metaplasia and apocrine adenosis of the breast: relation to oestrogen and progesterone receptors. J Clin Pathol 52:838–841

    PubMed  CAS  Google Scholar 

  • Selim AG, Ryan A, El-Ayat G, Wells CA (2002) Loss of heterozygosity and allelic imbalance in apocrine metaplasia of the breast: microdissection microsatellite analysis. J Pathol 196:287–291

    PubMed  Google Scholar 

  • Shin SJ, Simpson PT, Da Silva L et al (2009) Molecular evidence for progression of microglandular adenosis (MGA) to invasive carcinoma. Am J Surg Pathol 33:496–504

    PubMed  Google Scholar 

  • Shoker BS, Jarvis C, Clarke RB et al (2000) Abnormal regulation of the oestrogen receptor in benign breast lesions. J Clin Pathol 53:778–783

    PubMed  CAS  Google Scholar 

  • Simpson PT, Gale T, Fulford LG, Reis-Filho JS, Lakhani SR (2003) The diagnosis and management of pre-invasive breast disease: pathology of atypical lobular hyperplasia and lobular carcinoma in situ. Breast Cancer Res 5:258–262

    PubMed  Google Scholar 

  • Simpson PT, Reis-Filho JS, Gale T, Lakhani SR (2005a) Molecular evolution of breast cancer. J Pathol 205:248–254

    CAS  Google Scholar 

  • Simpson PT, Gale T, Reis-Filho JS et al (2005b) Columnar cell lesions of the breast: the missing link in breast cancer progression? A morphological and molecular analysis. Am J Surg Pathol 29:734–746

    Google Scholar 

  • Simpson PT, Reis-Filho JS, Lambros MB et al (2008) Molecular profiling pleomorphic lobular carcinomas of the breast: evidence for a common molecular genetic pathway with classic lobular carcinomas. J Pathol 215:231–244

    PubMed  CAS  Google Scholar 

  • Sloane JP, Mayers MM (1993) Carcinoma and atypical hyperplasia in radial scars and complex sclerosing lesions: importance of lesion size and patient age. Histopathology 23:225–231

    PubMed  CAS  Google Scholar 

  • Sneige N, Wang J, Baker BA, Krishnamurthy S, Middleton LP (2002) Clinical, histopathologic, and biologic features of pleomorphic lobular (ductal-lobular) carcinoma in situ of the breast: a report of 24 cases. Mod Pathol 15:1044–1050

    PubMed  Google Scholar 

  • Sorlie T, Perou CM, Tibshirani R et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874

    PubMed  CAS  Google Scholar 

  • Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360:790–800

    PubMed  CAS  Google Scholar 

  • Sotiriou C, Wirapati P, Loi S et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–272

    PubMed  CAS  Google Scholar 

  • Stratton MR, Collins N, Lakhani SR, Sloane JP (1995) Loss of heterozygosity in ductal carcinoma in situ of the breast. J Pathol 175:195–201

    PubMed  CAS  Google Scholar 

  • Tan PH, Ho BC, Selvarajan S, Yap WM, Hanby A (2005) Pathological diagnosis of columnar cell lesions of the breast: are there issues of reproducibility? J Clin Pathol 58:705–709

    PubMed  CAS  Google Scholar 

  • Tavassoli FA (1998) Ductal carcinoma in situ: introduction of the concept of ductal intraepithelial neoplasia. Mod Pathol 11:140–154

    PubMed  CAS  Google Scholar 

  • Tavassoli FA (2005) Breast pathology: rationale for adopting the ductal intraepithelial neoplasia (DIN) classification. Nat Clin Pract Oncol 2:116–117

    PubMed  Google Scholar 

  • Tavassoli FA, Bratthauer GL (1993) Immunohistochemical profile and differential diagnosis of microglandular adenosis. Mod Pathol 6:318–322

    PubMed  CAS  Google Scholar 

  • Tavassoli FA, Devilee, P (eds) (2003) Tumours of the breast. International Agency for Research of Cancer (IARC), Lyon

    Google Scholar 

  • Tavassoli FA, Norris HJ (1983) Microglandular adenosis of the breast. A clinicopathologic study of 11 cases with ultrastructural observations. Am J Surg Pathol 7:731–737

    PubMed  CAS  Google Scholar 

  • Tavassoli FA, Norris HJ (1990) A comparison of the results of long-term follow-up for atypical intraductal hyperplasia and intraductal hyperplasia of the breast. Cancer 65:518–529

    PubMed  CAS  Google Scholar 

  • Tsai YC, Lu Y, Nichols PW et al (1996) Contiguous patches of normal human mammary epithelium derived from a single stem cell: implications for breast carcinogenesis. Cancer Res 56:402–404

    PubMed  CAS  Google Scholar 

  • Vargas AC, Lakhani SR, Simpson PT (2009) Pleomorphic lobular carcinoma of the breast: molecular pathology and clinical impact. Future Oncol 5:233–243

    PubMed  CAS  Google Scholar 

  • Vargo-Gogola T, Rosen JM (2007) Modelling breast cancer: one size does not fit all. Nat Rev Cancer 7:659–672

    PubMed  CAS  Google Scholar 

  • Vincent-Salomon A (2003) Columnar lesions: a frequent diagnosis in breast pathology!. Ann Pathol 23:593–596

    PubMed  Google Scholar 

  • Vincent-Salomon A, Lucchesi C, Gruel N et al (2008) Integrated genomic and transcriptomic analysis of ductal carcinoma in situ of the breast. Clin Cancer Res 14:1956–1965

    PubMed  CAS  Google Scholar 

  • Vogelstein B, Fearon ER, Hamilton SR et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532

    PubMed  CAS  Google Scholar 

  • Vos CB, Cleton-Jansen AM, Berx G et al (1997) E-cadherin inactivation in lobular carcinoma in situ of the breast: an early event in tumorigenesis. Br J Cancer 76:1131–1133

    PubMed  CAS  Google Scholar 

  • Washington C, Dalbegue F, Abreo F, Taubenberger JK, Lichy JH (2000) Loss of heterozygosity in fibrocystic change of the breast: genetic relationship between benign proliferative lesions and associated carcinomas. Am J Pathol 157:323–329

    PubMed  CAS  Google Scholar 

  • Weidner N, Semple JP (1992) Pleomorphic variant of invasive lobular carcinoma of the breast. Hum Pathol 23:1167–1171

    PubMed  CAS  Google Scholar 

  • Weigelt B, Reis-Filho JS (2009) Histological and molecular types of breast cancer: is there a unifying taxonomy? Nat Rev Clin Oncol 6:718–730

    PubMed  CAS  Google Scholar 

  • Weigelt B, Glas AM, Wessels LF et al (2003) Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci U S A 100:15901–15905

    PubMed  CAS  Google Scholar 

  • Weigelt B, Hu Z, He X et al (2005a) Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res 65:9155–9158

    CAS  Google Scholar 

  • Weigelt B, Peterse JL, van’t Veer LJ (2005b) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602

    CAS  Google Scholar 

  • Weigelt B, Baehner FL, Reis-Filho JS (2009) The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol 220:263–280

    Google Scholar 

  • Weigelt B, Mackay A, A’Hern R et al (2010a) Breast cancer molecular profiling with single sample predictors: a retrospective analysis. Lancet Oncol 11:339–349

    CAS  Google Scholar 

  • Weigelt B, Geyer FC, Natrajan R et al (2010b) The molecular underpinning of lobular histological growth pattern: a genome-wide transcriptomic analysis of invasive lobular carcinomas and grade- and molecular subtype-matched invasive ductal carcinomas of no special type. J Pathol 220:45–57

    CAS  Google Scholar 

  • Wellings SR, Jentoft VL (1972) Organ cultures of normal, dysplastic, hyperplastic, and neoplastic human mammary tissues. J Natl Cancer Inst 49:329–338

    PubMed  CAS  Google Scholar 

  • Wellings SR, Jensen HM (1973) On the origin and progression of ductal carcinoma in the human breast. J Natl Cancer Inst 50:1111–1118

    PubMed  CAS  Google Scholar 

  • Wellings SR, Jensen HM, Marcum RG (1975) An atlas of subgross pathology of the human breast with special reference to possible precancerous lesions. J Natl Cancer Inst 55:231–273

    PubMed  CAS  Google Scholar 

  • Wirapati P, Sotiriou C, Kunkel S et al (2008) Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res 10:R65

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge S. Reis-Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Wilkerson, P.M., Dedes, K.J., Lopez-Garcia, M.A., Geyer, F.C., Reis-Filho, J.S. (2011). The Molecular Evolution of Breast Cancer Precursors and Risk Indicators. In: Kahán, Z. (eds) Breast Cancer, a Heterogeneous Disease Entity. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0489-3_5

Download citation

Publish with us

Policies and ethics