Skip to main content

Remote Sensing for Viticultural Research and Production

  • Chapter
  • First Online:
The Geography of Wine

Abstract

Geospatial technologies continue to advance mapping methods across societal ­sectors. Remote sensing, or the collection of Earth-viewing digital images by satellite or aircraft, is increasingly used as a viticultural production tool. The images may be used in isolation, or analyzed in combination with other supporting spatial data layers within a computerized geographic information system. Physical geography and corresponding cultural management can affect grapevine productivity, fruit characteristics, and wine quality. The influence of these factors may be expressed as alterations in the biophysical or biochemical properties of the grapevine canopy in ways that are often amenable to detection by remote sensing systems. This chapter introduces remote sensing technology and surveys the field of applied viticultural research to include methods of development for on-farm management, so-called precision viticulture, and regional land cover mapping. Finally, an overview is provided of prototype remote sensing advisory systems that have been developed for operational production support in wine-growing regions worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo-Opazo, C., B. Tissseyre, S. Guillaume, and H. Ojeda. 2008. The potential of high spatial resolution information to define within-vineyard zones related to vine water status. Precision Agriculture 9:285–302.

    Article  Google Scholar 

  • Allen, R., L. Pereira, D. Raes, and M. Smith. 1998. Crop evapotranspiration - Guidelines for computing crop water requirements. Irrigation and Drainage Paper 56. Rome: United Nations Food and Agriculture Organization.

    Google Scholar 

  • Baldy, R., J. DeBenedictis, L. Johnson, E. Weber, M. Baldy, and J. Burleigh. 1996. Relating chlorophyll and vine size to yields in a phylloxera-infested vineyard. Vitis 35 (4):201–205.

    Google Scholar 

  • Bastiaanssen, W., M. Ahmad, and Y. Chemin. 2002. Satellite surveillance of evaporative depletion across the Indus Basin. Water Resources Research 38 (12):1273–82.

    Article  Google Scholar 

  • Bastiaanssen, W. and S. Ali. 2003. A new crop yield forecasting model based on satellite measurements applied across the Indus Basin, Pakistan. Agriculture, Ecology and Environment 94 (3):321–340.

    Article  Google Scholar 

  • Bastiaanssen, W., E. Noordman, H. Pelgrum, G. Davids, Thoreson, B., and R. Allen. 2005. SEBAL Model with Remotely Sensed Data to Improve Water Resources Management under Actual Field Conditions, Journal of Irrigation and Drainage Engineering 131 (1):85–93

    Article  Google Scholar 

  • Bastiaanssen, W., R. Allen, H. Pelgrum, A. Texeira, R. Soppe, and B. Thoreson. 2008. Thermal-infrared technology for local and regional scale irrigation analyses in horticultural systems. Acta Horticulturae 792 (V Int’l Symposium on Irrigation of Horticultural Crops, eds. I. Goodwin and M. O’Connel), ISHS.

    Google Scholar 

  • Bramley, R. and R. Hamilton. 2004. Understanding variability in winegrape production systems. Australian Journal of Grape and Wine Research 10:32–45.

    Article  Google Scholar 

  • Chalker-Scott, L. 1999. Environmental significance of anthocyanins in plant stress responses. Photochemistry and Photobiology 79 (1):1–9.

    Article  Google Scholar 

  • Close, D. and C. Beadle. 2003. The ecophysiology of foliar anthocyanin. The Botanical Review 69 (2):149–161.

    Article  Google Scholar 

  • Courault, D., B. Seguin, and A. Olioso. 2005. Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modeling approaches. Irrigation and Drainage Systems 19:223–49.

    Article  Google Scholar 

  • Da Costa, J., F. Michelet, C. Germain, O. Lavialle, and G. Grenier. 2007. Delineation of vine parcels by segmentation of high resolution remote sensed images. Precision Agriculture 8:95–110.

    Article  Google Scholar 

  • Daughtry, C., C. Walthall, M. Kim, E. Brown de Colstoun, and J. McMurtrey. 2000. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment 74:229–39.

    Article  Google Scholar 

  • Delenne, C., S. Durrieu, G. Rabatel, M. Deshayes, J. Bailly, C. LeLong, and P. Couteron. 2008. Textural approaches for vineyard detection and characterization using very high spatial resolution remote sensing data. International Journal of Remote Sensing 29 (4):1153–67.

    Article  Google Scholar 

  • Dickenson, J. and J. Salt. 1982. In vino veritas: an introduction to the geography of wine. Progress in Human Geography 16 (2):159–89.

    Google Scholar 

  • Dobrowski, S., S. Ustin, and J. Wolpert. 2002. Remote estimation of vine canopy density in vertically shoot positioned vineyards: Determining optimal vegetation indices. Australian Journal of Grape and Wine Research 8:117–125.

    Article  Google Scholar 

  • Dobrowski, S., S. Ustin, and J. Wolpert. 2003. Grapevine dormant pruning weight prediction using remotely sensed data. Australian Journal of Grape and Wine Research 9:177–82.

    Article  Google Scholar 

  • English, J., C. Thomas, J. Marois, and W. Gubler. 1989. Microclimates of grapevine canopies associated with leaf removal and control of Botrytis bunch rot. Phytopathology 79:395–401.

    Article  Google Scholar 

  • Eryilmaz, F. 2006. The relationships between salt stress and anthocyanin content in higher plants. Biotechnology and Biotechnological Equipment 20 (1):47–52.

    Google Scholar 

  • Friedl, M. and C. Brodley. 1997. Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment 61:399–409.

    Article  Google Scholar 

  • Fuchs, M. and C. Tanner. 1966. Infrared thermography of vegetation. Agronomy Journal 58:597–601

    Article  Google Scholar 

  • Gitelson, A., A. Vina, V. Ciganda, D. Rundquist, and T. Arkebauer. 2005. Remote estimation of canopy chlorophyll content in grapes. Geophysical Research Letters 32:L08403, doi:10.1029/2005GL022688.

    Article  Google Scholar 

  • Haboudane, D., J. Miller, N. Tremblay, P. Zarco-Tejada, and L. Dextraze. 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment 81:416–26.

    Article  Google Scholar 

  • Hall, A., D. Lamb, B. Holzapfel, and J. Louis. 2002. Optical remote sensing applications in viticulture – a review. Australian Journal of Grape and Wine Research 8:36–47.

    Article  Google Scholar 

  • Hall, A., J. Louis, and D. Lamb. 2003. Characterising and mapping vineyard canopy using high-spatial-resolution aerial multispectral images. Computers and Geosciences 29:813–22.

    Article  Google Scholar 

  • Hall, A., D. Lamb, B. Holzapfel, and J. Louis. 2011. Within-season temporal variation in correlations between vineyard canopy and winegrape composition and yield. Precision Agriculture 12:103–117.

    Google Scholar 

  • Hay, C. 1974. Agricultural inventory techniques with orbital and high-altitude imagery. Photogrammetric Engineering 40:1283–93.

    Google Scholar 

  • Heilman, J., W. Heilman, and D. Moore. 1982. Evaluating the crop coefficient using spectral reflectance. Agronomy Journal 74:967–71.

    Article  Google Scholar 

  • Hornbuckle, J., N. Car, E. Christen, T. Stein, and B. Williamson. 2009. IrriSatSMS irrigation water management by satellite and SMS – A utilisation framework. CRC for Irrigation Futures Technical Report No. 01/09, CSIRO Land and Water Science Report No. 04/09.

    Google Scholar 

  • Jackson, D. and P. Lombard. 1993. Environmental and management practices affecting grape composition and wine quality: A review. American Journal of Enology and Viticulture 44:409–430.

    Google Scholar 

  • Johnson, D. 2008. A comparison of coincident Landsat-5 TM and Resourcesat-1 AWIFS imagery for classifying croplands. Photogrammetric Engineering and Remote Sensing 74 (11):1313–23.

    Google Scholar 

  • Johnson, L., C. Hlavka, and D. Peterson, 1994. Multivariate Analysis of AVIRIS data for canopy biochemical estimation along the Oregon Transect. Remote Sensing of Environment 47:216–230.

    Article  Google Scholar 

  • Johnson, L., B. Lobitz, R. Armstrong, R. Baldy, E. Weber, J. DeBenedictis, and D. Bosch. 1996. Airborne imaging aids vineyard canopy evaluation. California Agriculture 50 (4):14–18.

    Article  Google Scholar 

  • Johnson, L., D. Bosch, D. Williams, and B. Lobitz. 2001. Remote sensing of vineyard management zones: implications for wine quality. Applied Engineering in Agriculture 17 (4):557–60.

    Google Scholar 

  • Johnson, L., D. Roczen, S. Youkhana, R. Nemani, and D. Bosch. 2003. Mapping vineyard leaf area with multispectral satellite imagery. Computers and Electronics in Agriculture 38 (1):37–48.

    Article  Google Scholar 

  • Johnson, L. 2003. Temporal stability of the NDVI-LAI relationship in a Napa Valley vineyard. Australian Journal of Grape and Wine Research 9:96–101.

    Article  Google Scholar 

  • Johnson, L, and T. Scholasch. 2005. Remote sensing of shaded area in vineyards. HortTechnology 15:859–863.

    Google Scholar 

  • Jones, G. 2005. Climate change and global wine quality. Climatic Change 73 (3):319–43.

    Article  Google Scholar 

  • Kalma J., T. McVicar, and M. McCabe. 2008. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surveys in Geophysics 29(4–5):421–69.

    Article  Google Scholar 

  • Klaasse, A., W. Bastiaanssen, C. Jarmain, and A. Roux. 2008. Water use efficiency of table and wine grapes in Western Cape, South Africa. Wageningen: WaterWatch.

    Google Scholar 

  • Lanjeri, L., D. Degarra, and J. Melia. 2004. Interannual vineyard crop variability in the Castilla-La Mancha region during the period 1991–1996 with Landsat Thematic Mapper images. International Journal of Remote Sensing 25 (12):2441–57.

    Article  Google Scholar 

  • Lamb, D., M. Weedon, and R. Bramley. 2004. Using remote sensing to predict grape phenolics and colour at harvest in a Cabernet Sauvignon vineyard. Australian Journal of Grape and Wine Research 10:46–54.

    Article  Google Scholar 

  • MacDonald, R. and F. Hall. 1980. Global crop forecasting. Science 208 (Issue 4445):670–79.

    Article  Google Scholar 

  • Martin, P., P. Zarco-Tejada, M. Gonzalez, and A. Berjon. 2007. Using hyperspectral remote sensing to map grape quality in Tempranillo vineyards affected by iron deficiency chlorosis. Vitis 46 (1):7–14.

    Google Scholar 

  • Montero, F., J. Melia, A. Brasa, D. Segarra, A. Cuesta, and S. Lanjeri. 1999. Assessment of vine development according to available water resources by using remote sensing in La Mancha, Spain. Agricultural Water Management 40:363–375.

    Article  Google Scholar 

  • National Research Council. 1988. Toward an understanding of global change: Initial priorities for U.S. contributions to the International Geosphere Biosphere Program. Washington, DC: National Academy Press.

    Google Scholar 

  • Neale, C., H. Jayanthi, and J. Wright. 2005. Irrigation water management using high resolution airborne remote sensing. Irrigation and Drainage Systems 19:321–26.

    Article  Google Scholar 

  • Nemani, R. and S. Running. 1989. Testing a theoretical climate-soil-leaf area hydrologic equilibrium of forests using satellite data and ecosystem simulation. Agricultural and Forest Meteorology 44:245–60.

    Article  Google Scholar 

  • Nemani, R., H. Hashimoto, P. Votava, F. Melton, W. Wang, A. Michaelis, L. Mutch, C. Milesi, S. Hiatt, and M. White. 2009. Monitoring and forecasting ecosystem dynamics using the Terrestrial Observation and Prediction System (TOPS). Remote Sensing of Environment 113 (7):1497–1509

    Article  Google Scholar 

  • Pinter, P., J. Hatfield, J. Schepers, E. Barnes, M. Moran, C. Daughtry, and D. Upchurch. 2003. Remote sensing for crop management. Photogrammetric Engineering and Remote Sensing 69 (6):647–64.

    Google Scholar 

  • Pringle, M., A. McBratney, B. Whelan, and J. Taylor. 2003. A preliminary approach to assessing the opportunity for site-specific crop management in a field, using yield monitor data. Agricultural Systems 76:273–292.

    Article  Google Scholar 

  • Rabatel, G., C. Delenne, and M. Deshayes. 2008. A non-supervised approach using Gabor filters for vine-plot detection in aerial images. Computers and Electronics in Agriculture 62:159–68.

    Article  Google Scholar 

  • Richardson, A. and C. Wiegand. 1977. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing 43:1541–1552.

    Google Scholar 

  • Smart, R. and B. Coombe. 1983. Water relations of grapevines. In Water Deficits and Plant Growth, vol. 2, ed. T. Kozlowski, 137–196. New York: Academic.

    Google Scholar 

  • Smart, R. 1985. Principles of grapevine canopy microclimate manipulation with implications for yield and quality. American Journal of Enology and Viticulture 36:230–239.

    Google Scholar 

  • Smart, R. and M. Robinson. 1991. Sunlight into wine: A handbook for winegrape canopy management. Adelaide: Winetitles.

    Google Scholar 

  • Stamatiadis, S., D. Taskos, C. Tsadilas, C. Christofides, E. Tsadila, and J. Schepers. 2006. Relation of ground-sensor canopy reflectance to biomass production and grape color in two Merlot vineyards. American Journal of Enology and Viticulture 57 (4):415–22.

    Google Scholar 

  • Steele, M., A. Gitelson, D. Rundquist, and M. Merzlyak. 2009. Non-destructive estimation of anthocyanin content in grapevine leaves. American Journal of Enology and Viticulture 60 (1):87–92.

    Google Scholar 

  • Tate, A. 2001. Global warming’s impact on wine. Journal of Wine Research 12 (2):95–109.

    Article  Google Scholar 

  • Teixeira, A., W. Bastiaanssen, M. Ahmad, and M. Bos. 2008. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Lower-Middle Sao Francisco river basin, Brazil, Part A: Calibration and validation. Agriculture and Forest Meteorology 149 (3–4):462–476.

    Google Scholar 

  • Tisseyre, B., H. Ojeda, and J. Taylor. 2007. New technologies and methodologies for site-specific viticulture. International Journal of Wine and Vine Research 41 (2):63–76.

    Google Scholar 

  • Tisseyre B. and A. McBratney. 2008. A technical opportunity index based on mathematical morphology for site-specific management using yield monitor data: Application to viticulture. Journal of Precision Agriculture 9 (1–2):101–113.

    Article  Google Scholar 

  • Tonietto, J. 2008. Geographical indicators for grapes. Acta Horticulturae 785:467–76.

    Google Scholar 

  • Townshend, J., C. Justice, W. Li, C. Gurney, and J. McManus. 1991. Global land cover classification by remote sensing: Present capabilities and future possibilities. Remote Sensing of Environment 35:243–255.

    Article  Google Scholar 

  • Trolier, L., W. Philipson, and W. Philpot. 1989. Landsat TM analysis of vineyards in New York. International Journal of Remote Sensing 10 (7):1277–1282.

    Article  Google Scholar 

  • Trout, T., L. Johnson, and J. Gartung. 2008. Remote sensing of canopy cover in horticultural crops. HortScience 43(2):333–337.

    Google Scholar 

  • Tucker, C. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8:127–50.

    Article  Google Scholar 

  • Vaudour, E. 2002. The quality of grapes and wine in relation to geography. Journal of Wine Research 13 (2):117–41.

    Article  Google Scholar 

  • Warner, T. and K. Steinmaus. 2005. Spatial classification of orchards and vineyards with high spatial resolution ­panchromatic ­imagery. Photogrammetric Engineering and Remote Sensing 71 (2):179–87.

    Google Scholar 

  • Wassenaar, T., F. Baret, J. Robbez-Masson, and P. Andrieux. 2001. Sunlit soil surface extraction from remotely sensed imagery of perennial, discontinuous crop areas: The case of Mediterranean vineyards. Agronomie 21:235–45.

    Article  Google Scholar 

  • Wassenaar, T., J. Robbez-Masson, and P. Andrieux. 2002. Vineyard identification and description of spatial crop structure by per-field frequency analysis. International Journal of Remote Sensing 23 (17):3311–25.

    Article  Google Scholar 

  • Wiegand, C., A. Richardson, D. Escobar, and A. Gerbermann. 1991. Vegetation indices in crop assessments. Remote Sensing of Environment 35:105–19.

    Article  Google Scholar 

  • Wildman, W., R. Nagaoka, and L. Lider. 1983. Monitoring spread of grape phylloxera by color infrared aerial photography and ground investigation. American Journal of Enology and Viticulture 34 (2):83–94.

    Google Scholar 

  • Williams, L. and J. Ayars. 2005. Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Agricultural and Forest Meteorology 132:201–11.

    Article  Google Scholar 

  • Winkler, A. 1958. The relation of leaf area and climate to vine performance and grape quality. American Journal of Enology and Viticulture 9:10–23.

    Google Scholar 

  • Zarco-Tejada, P., A. Berjon, R. Lopez-Lozano, J. Miller, P. Martin, V. Cachorro, M. Gonzalez, and A. de Frutos. 2005. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment 99:271–87.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee F. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Johnson, L.F. et al. (2012). Remote Sensing for Viticultural Research and Production. In: Dougherty, P. (eds) The Geography of Wine. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0464-0_12

Download citation

Publish with us

Policies and ethics