Skip to main content

Yeast Biosorption and Recycling of Metal Ions by Cell Surface Engineering

  • Chapter
  • First Online:
Microbial Biosorption of Metals

Abstract

Metal biosorption by microorganisms contributes to the removal of toxic heavy metal ions and collection of metal resources from waste streams. Cell surface biosorption enhanced by cell surface engineering is a unique and effective approach for the construction of a novel biosorbent. Through biosorption, adsorbed metal ions can be easily recovered without disintegration of cells, and the repeated use of cells as adsorbents for the biosorption and recuperation of metal ions becomes feasible. Thus, engineering of cell surfaces for enhanced biosorption of metal ions has the potential to be more suitable than genetic manipulations that promote intracellular accumulation. Metal-binding proteins and peptides were displayed on the yeast cell surface by an α-agglutinin-based display system, and cell surface-engineered yeasts showed enhanced biosorption of, and tolerance to, heavy metal ions. In addition, a yeast biosorbent for biosorption and recovery of molybdate ions was constructed by cell surface display of molybdate-binding protein (ModE). The metal biosorption ability of cell surface-engineered yeasts relies upon features of the displayed metal-binding proteins and natural properties of particular cell wall. Metal-binding proteins with a capacity to form selective coordination spheres and provide tailored biosorption could be generated by direct screening a mutant library with combinatorial mutations in the metal recognition domain at the yeast cell wall background. Therefore, generation of novel metal-binding proteins and molecular breeding of yeast biosorbents showing selective biosorption can be concurrently achieved by cell surface engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bossier P, Goethals P, Rodrigues-Pousada C (1997) Constitutive flocculation in Saccharomyces cerevisiae through overexpression of the GTS1 gene, coding for a ‘Glo’-type Zn-finger-containing protein. Yeast 13:717–725

    CAS  Google Scholar 

  • Butt TR, Ecker DJ (1987) Yeast metallothionein and applications in biotechnology. Microbiol Rev 51:351–364

    PubMed  CAS  Google Scholar 

  • Eccles H (1999) Treatment of metal-contaminated wastes: why select a biological process? Trends Biotechnol 17:462–465

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM, White C (1993) Microbial treatment of metal pollution—a working biotechnology? Trends Biotechnol 11:353–359

    Article  PubMed  CAS  Google Scholar 

  • Georgiou G, Poetschke HL, Stathopoulos C, Francisco JA (1993) Practical applications of engineering gram-negative bacterial cell surface. Trends Biotechnol 11:6–10

    Article  PubMed  CAS  Google Scholar 

  • Houchi H, Dobeli H, Schacher A (1987) New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr 411:177–184

    Article  Google Scholar 

  • Kapoor A, Viraraghavan T (1995) Fungal biosorption—an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour Technol 53:195–206

    CAS  Google Scholar 

  • Kisker C, Schindelin H, Rees DC (1997) Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem 66:233–267

    Article  PubMed  CAS  Google Scholar 

  • Kondo A, Ueda M (2004) Yeast cell-surface display—applications of molecular display. Appl Microbiol Biotechnol 64:28–40

    Article  PubMed  CAS  Google Scholar 

  • Kuroda K, Ueda M (2003) Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying methallothionein and hexa-His. Appl Microbiol Biotechnol 63:182–186

    Article  PubMed  CAS  Google Scholar 

  • Kuroda K, Ueda M (2006) Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Appl Microbiol Biotechnol 70:458–463

    Article  PubMed  CAS  Google Scholar 

  • Kuroda K, Shibasaki S, Ueda M, Tanaka A (2001) Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Appl Microbiol Biotechnol 57:697–701

    Article  PubMed  CAS  Google Scholar 

  • Kuroda K, Ueda M, Shibasaki S, Tanaka A (2002) Cell surface-engineered yeast with ability to bind, and self-aggregate in response to, copper ion. Appl Microbiol Biotechnol 59:259–264

    Article  PubMed  CAS  Google Scholar 

  • Lipke PN, Kurjan J (1992) Sexual agglutination in budding yeasts: structure, function, and regulation of adhesion glycoproteins. Microbiol Rev 56:180–194

    PubMed  CAS  Google Scholar 

  • Lovely DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Article  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  PubMed  CAS  Google Scholar 

  • Marques AM, Roca X, Simon-Pujol MD, Fuste MC, Congregado F (1991) Uranium accumulation by Pseudomonas sp. EPS-5028. Appl Microbiol Biotechnol 35:406–410

    Article  CAS  Google Scholar 

  • Nishitani T, Shimada M, Kuroda K, Ueda M (2010) Molecular design of yeast cell surface for adsorption and recovery of molybdenum, one of rare metals. Appl Microbiol Biotechnol 86:641–648

    Article  PubMed  CAS  Google Scholar 

  • Pazirandeh M, Chrisey LA, Mauro JM, Campbell JR, Gaber BP (1995) Expression of the Neurospora crassa methallothionein gene in Escherichia coli and its effect on heavy-metal uptake. Appl Microbiol Biotechnol 43:1112–1117

    Article  PubMed  CAS  Google Scholar 

  • Perego P, Howell SB (1997) Molecular mechanisms controlling sensitivity to toxic metal ions in yeast. Toxicol Appl Pharmacol 147:312–318

    Article  PubMed  CAS  Google Scholar 

  • Samuelson P, Wernerus H, Svedberg M, Stahl S (2000) Staphylococcal surface display of metal-binding polyhistidyl peptides. Appl Environ Microbiol 66:1243–1248

    Article  PubMed  CAS  Google Scholar 

  • Sawai-Hatanaka H, Ashikari T, Tanaka Y, Asada Y, Nakayama T, Minakata H, Kunishima N, Fukuyama K, Yamada H, Shibano Y, Amachi T (1995) Cloning, sequencing, and heterologous expression of a gene coding for Arthromyces ramosus peroxidase. Biosci Biotechnol Biochem 59:1221–1228

    Article  PubMed  CAS  Google Scholar 

  • Self WT, Grunden AM, Hasona A, Shanmugam KT (2001) Molybdate transport. Res Microbiol 152:311–321

    Article  PubMed  CAS  Google Scholar 

  • Sousa C, Cebolla A, de Lorenzo V (1996) Enhanced metalloadsorption of bacterial cells displaying poly-His peptides. Nat Biotechnol 14:1017–1020

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Ueda M, Atomi H, Beer HD, Bornscheuer UT, Schmid RD, Tanaka A (1998) Extracellular production of active Rhizopus oryzae lipase by Saccharomyces cerevisiae. J Ferment Bioeng 86:164–168

    Article  CAS  Google Scholar 

  • Ueda M (2004) Future direction of molecular display by yeast-cell surface engineering. J Mol Catal B 28:139–143

    Article  CAS  Google Scholar 

  • Ueda M, Tanaka A (2000) Genetic immobilization of proteins on the yeast cell surface. Biotechnol Adv 18:121–140

    Article  PubMed  CAS  Google Scholar 

  • Wagner UG, Stupperich E, Kratky C (2000) Structure of the molybdate/tungstate binding protein mop from Sporomusa ovata. Structure 8:1127–1136

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouichi Kuroda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kuroda, K., Ueda, M. (2011). Yeast Biosorption and Recycling of Metal Ions by Cell Surface Engineering . In: Kotrba, P., Mackova, M., Macek, T. (eds) Microbial Biosorption of Metals. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0443-5_10

Download citation

Publish with us

Policies and ethics