Skip to main content

Biological Control of Plant-Parasitic Nematodes: Towards Understanding Field Variation Through Molecular Mechanisms

  • Chapter
  • First Online:
Genomics and Molecular Genetics of Plant-Nematode Interactions

Abstract

In the search for alternatives to nematicides, biological control has always remained in the shadow of plant resistance. However, basic research on the natural enemies of nematode pests can lead to much informative knowledge on host-parasite interactions. This review looks at the historical context of the use of natural enemies to control plant-parasitic nematodes. Initially looking at antibodies, phospholipid fatty acid analysis and DNA as techniques to assess field variation, we go on to suggest that ecological genomics as a discipline can be used to unify the disparate areas of genetics, microbiology, biochemistry and ecology, in a co-evolutionary context. By way of examples, using Arthrobotrys, Trichoderma and Pasteuria penetrans, genomics is used, within its ecological framework, as a way to promote hypothesis driven research which hitherto has been impossible. With the advent of synthetic biology, we suggest that key genes important in compatible host-parasite populations and that can act synergistically, will lead to an approach that paves the way for the development of designer biological control agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EGJ, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC, Caillaud MC, Coutinho PM, Dasilva C, De Luca F, Deau F, Esquibet M, Flutre T, Goldstone JV, Hamamouch N, Hewezi T, Jaillon O, Jubin C, Leonetti P, Magliano M, Maier TR, Markov GV, McVeigh P, Pesole G, Poulain J, Robinson-Rechavi M, Sallet E, Segurens B, Steinbach D, Tytgat T, Ugarte E, van Ghelder C, Veronico P, Baum TJ, Blaxter M, Bleve-Zacheo T, Davis EL, Ewbank JJ, Favery B, Grenier E, Henrissat B, Jones JT, Laudet V, Maule AG, Quesneville H, Rosso MN, Schiex T, Smant G, Weissenbach J, Wincker P (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nature Biotechnology 26:909–915

    Article  PubMed  CAS  Google Scholar 

  • Avendano F, Pierce FJ, Melakeberhan H (2004) The relationship between soybean cyst nematode seasonal population dynamics and soil texture. Nematology 6:511–525

    Article  Google Scholar 

  • Balogh J, Tunlid A, Rosen S (2003) Deletion of a lectin gene does not affect the phenotype of the nematode-trapping fungus Arthrobotrys oligospora. Fungal Genet Biol 39:128–135

    Article  PubMed  CAS  Google Scholar 

  • Bardgett RD, Cook R, Yeates GW et al (1999) The influence of nematodes on below-ground processes in grassland ecosystems. Plant Soil 212:23–33

    Article  CAS  Google Scholar 

  • Bardgett RD, Hobbs PJ, Frostegard A (1996) Changes in soil: fungal biomass rations following reductions in the intensity of management of an upland grassland. Biol Fertil Soils 22:261–264

    Article  Google Scholar 

  • Barron GL (1977) The Nematode Destroying Fungi. Canadian Publications, Ontario, Canada

    Google Scholar 

  • Bekku Y, Kimura M, Koizumi H (1997) Carbon input from plant to soil through root exudation in Digitaria adscendens and Ambrosia artemisiifolia. Ecol Res 12:305–312

    Article  Google Scholar 

  • Bird DM, Opperman CH, Davies KG (2003) Interactions between bacteria and plant parasitic nematodes: now and then. Int J Parasitol 33:1269–1276

    Article  PubMed  CAS  Google Scholar 

  • Bishop AH, Gowen SR, Pembroke B, Trotter JR (2007) Morphological and molecular characteristics of a new species of Pasteuria parasitic on Meloidogyne ardenensis. J Invert Pathol 96:28–33

    Article  CAS  Google Scholar 

  • Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, Floyd R, Abebe E (2005) Defining operational taxonomic units using DNA barcode data. Philos Trans R Soc London, Ser B: Biol Sci 360:1935–1943

    Article  CAS  Google Scholar 

  • Blaxter ML, De Ley P, Garey JR Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75

    Article  PubMed  CAS  Google Scholar 

  • Borrebaeck CA, Mattiasson B, Nordbring-Hertz B (1984) Isolation and partial characterization of a carbohydrate-binding protein from a nematode-trapping fungus. J Bacteriol 159:53–56

    PubMed  CAS  Google Scholar 

  • Brinkman EP, Duyts H, van der Putten WH (2005) Consequences of variation in species diversity in a community of root-feeding herbivores for nematode dynamics and host plant biomass. Oikos 110:417–427

    Article  Google Scholar 

  • Burbulys D, Trach KA, Hoch JA (1991) Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell 64:545–552

    Article  PubMed  CAS  Google Scholar 

  • Charles L, Carbonne I, Davies KG, Bird D, Burke M, Kerry BR, Opperman CH (2005) Phylogenetic analysis of Pasteuria penetrans using multiple genetic loci. J Bacteriol 187:5700–5708

    Article  PubMed  CAS  Google Scholar 

  • Clark MF (1994) Immunodiagnosis methods using polyclonal and monoclonal antibodies. In: Hawksworth DL (ed) The identification and characterisation of pest organisms. CAB International, Wallingford, pp 377–393

    Google Scholar 

  • Cobb NA (1920) Transferance of nematodes (Mononchs) from place to place for economic purposes. Science 51:640–641

    Article  PubMed  CAS  Google Scholar 

  • Cook R, Starr, JL (2006) Resistant Cultivars. In: Perry RN, Moens M (eds) Plant nematology CABI International, Wallingford, pp 370–391

    Google Scholar 

  • Costa SR, Kerry BR, Bardgett R, Davies KG (2006) Exploitation of immunofluorescence for the quantification and characterisation of small numbers of Pasteuria endospores. FEMS Microbiol Ecol 58:593–600

    Article  PubMed  CAS  Google Scholar 

  • Costa SR, van der Putten WH, Kerry BR (2010) Microbial ecology and nematode control in natural ecosystems. In: Davies KG, Spiegel Y (eds) Biological control of plant parasitic nematodes: building coherence between microbial ecology and molecular mechanisms. Springer, Berlin, Dortrecht

    Google Scholar 

  • Darby C (2005) Interactions with microbial pathogens. WormBook, pp 1–15

    Google Scholar 

  • Davies KG (1994) A nematode case study focusing on the application of serology. In: Hawksworth DL (ed) The identification and characterisation of pest organisms. CAB International, Wallingford, pp 395–413

    Google Scholar 

  • Davies KG (2009) Understanding the interaction between an obligate hyperparasitic bacterium, Pasteuria penetrans and its obligate plant parasitic nematode host, Meloidogyne spp. Adv Parasitol 68:211–245

    Article  PubMed  Google Scholar 

  • Davies KG, Carter B (1995) Comparison of immunoassays for the quantification of root-knot nematodes extracted from soil. EPPO Bull 25:367–375

    Article  Google Scholar 

  • Davies KG, Danks C (1993) Carbohydrate/protein interactions between the cuticle of infective juveniles of Meloidogyne incognita and spores of the obligate hyperparasite Pasteuria penetrans. Nematologica 39:54–64

    Article  Google Scholar 

  • Davies KG, Lander EB (1992) Immunological differentiation of root-knot nematodes (Meloidogyne spp.) using monoclonal and polyclonal antibodies. Nematologica 38:353–366

    Article  Google Scholar 

  • Davies KG, Opperman CH (2006) A potential role for collagen in the attachment of Pasteuria penetrans to nematode cuticle. IOBC/wprs Bull 29:11–15

    Google Scholar 

  • Davies KG, Redden M (1997) Diversity and partial characterisation of putative virulence determinants in Pasteuria penetrans, the hyperparasite of root-knot nematodes. J Appl Microbiol 83:227–235

    Article  PubMed  CAS  Google Scholar 

  • Davies KG, Spiegel Y (2010) Root patho-systems nematology and biological control. In: Davies KG, Spiegel Y (eds) Biological control of plant- parasitic nematodes: building coherence between microbial ecology and molecular mechanisms. Springer, Berlin, Dortrecht

    Google Scholar 

  • Davies KG, Redden M, Pearson TK (1994) Endospore heterogeneity in Pasteuria penetrans related to attachment to plant-parasitic nematodes. Lett Appl Microbiol 19:370–373

    Article  Google Scholar 

  • Davies KG, Curtis RH, Evans K (1996) Serologically based diagnostic and quantification tests for nematodes. Pestic Sci 47:81–87

    Article  Google Scholar 

  • Davies KG, Fargette M, Balla G, Daudi A, Duponnois R, Gowen SR, Mateille T, Phillips MS, Sawadogo S, Trivino C, Vouyoukalou E, Trudgill DL (2001) Cuticle heterogeneity as exhibited by Pasteuria spore attachment is not linked to the phylogeny of parthenogenetic root-knot nematodes (Meloidogyne spp.) Parasitology 122:111–120

    Article  PubMed  Google Scholar 

  • Decaestecker E, Gaba S, Raeymaekers JA, Stoks R, Van Kerckhoven L, Ebert D, De Meester L (2007) Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450:870–873

    Article  PubMed  CAS  Google Scholar 

  • de la Pena E, Vandegehuchte M, Bonte D et al (2008) Analysis of the specificity of three root-feeders towards grasses in coastal dunes. Plant Soil 310:113–120

    Article  CAS  Google Scholar 

  • De Mesel I, Derycke S, Moens T, van der Gucht K, Vincx M, Swings J (2004) Top-down impact of bacterivorous nematodes on the bacterial community structure: a microcosm study. Environ Microbiol 6:733–744

    Article  PubMed  Google Scholar 

  • Denton CS, Bardgett RD, Cook R, Hobbs PJ (1999) Low amounts of root herbivory positively influence the rhizosphere microbial community in a temperate grassland soil. Soil Biol Biochem 31:155–165

    Article  CAS  Google Scholar 

  • Dijksterhuis J, Veenhuis M, Harder W, Nordbring-Hertz B (1994) Nematophagous fungi: physiological aspects and structure-function relationships. Adv Microb Physiol 36:111–143

    Article  PubMed  CAS  Google Scholar 

  • Ebert D amd Hamilton WD (1996) Sex against virulence: the coevolution of parasitic diseases. Trends Ecol Evol 11:A79–A82

    Article  Google Scholar 

  • Ebert D, Rainey P, Embley TM, Scholtz D (1996) Development, life cycle, ultrastructure and phylogenetic position of Pasteuria ramosa Metchnikoff 1888: rediscovery of an obligate endoparasite of Daphnia magna Straus. Philos Trans R Soc Lond B 351:1689–1701

    Article  Google Scholar 

  • Environmental Protection Agency of the United States (2009) Biopesticide registration action document Pasteuria usage PC code 006545. http://www.epa.gov/opp00001/biopesticides/ingredients/tech_docs/brad_006545.pdf

  • Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183

    Article  Google Scholar 

  • Fekete C, Tholander M, Rajashekar B, Ahren D, Friman E, Johansson T, Tunlid A (2008) Paralysis of nematodes: shifts in the transcriptome of the nematode-trapping fungus Monacrosporium haptotylum during infection of Caenorhabditis elegans. Environ Microbiol 10:364–375

    Article  PubMed  CAS  Google Scholar 

  • Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850

    Article  PubMed  CAS  Google Scholar 

  • Foucher ALJL, Bongers T, Noble LR, Wilson JM (2004) Assessment of nematode biodiversity using DGGE of 18S rDNA following extraction of nematodes from soil. Soil Biol Biochem 36:2027–2032

    Article  CAS  Google Scholar 

  • Fraser C, Alm EJ, Polz MF, Spratt BG, Hanage WP (2009) The bacterial species challenge: making sense of genetic and ecological diversity. Science 323:741–746

    Article  PubMed  CAS  Google Scholar 

  • Fuchs BB, Mylonakis E (2006) Using non-mammalian hosts to study fungal virulence and host defense. Curr Opin Microbiol 9:346–351

    Article  PubMed  CAS  Google Scholar 

  • Gair R, Mathias PL, Harvey PN (1969) Studies of cereal nematode populations and cereal yields under continuous or intensive culture. Ann Appl Biol 63:503–512

    Article  Google Scholar 

  • Giblin-Davis RMD, Williams S, Bekal S, Dickson DW, Brito JA, Becker JO, Preston JF (2003) ‘Candidatus Pasteuria usgae’ sp. nov., an obligate endoparasite of the phytoparasitic nematode, Belonolaimus longicaudatus. Int J Syst Evol Microbiol 53:197–200

    Article  PubMed  CAS  Google Scholar 

  • Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA, Smith HO, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329:52–56

    Article  PubMed  CAS  Google Scholar 

  • Gowen SR, Davies KG, Pembroke B (2007) Potential use of Pasteuria spp. in the management of plant parasitic nematodes. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grain crops nematodes. Springer, Dortrecht, pp 197–210

    Google Scholar 

  • Gravato-Nobre MJ, Hodgkin J (2005) Caenorhabditis elegans as a model for innate immunity to pathogens. Cell Microbiol 7:741–751

    Article  PubMed  CAS  Google Scholar 

  • Grimshaw CE, Huang S, Hanstein CG, Strauch MA, Burbulys D, Wang L, Hoch JA, Whiteley JM (1998) Synergistic kinetic interactions between components of the phosphorelay controlling sporulation in Bacillus subtilis. Biochemistry 37:1365–1375

    Article  PubMed  CAS  Google Scholar 

  • Hallmann J, Davies KG, Sikora R (2009) Biological control using microbial pathogens, endophytes and antagonists. In: Perry RN, Moens M, Starr JL (eds) Root-knot nematodes. CABI International, Wallingford

    Google Scholar 

  • Hallmann J, Sikora RA (2010) Endophytic fungi. In: Davies KG, Spiegel Y (eds) Biological control of plant- parasitic nematodes: building coherence between microbial ecology and molecular mechanisms. Springer, Berlin, Dortrecht

    Google Scholar 

  • Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190–194

    Article  PubMed  CAS  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma spp.—opportunistic avirulent plant symbionts. Nature Microbiol Rev 2:43–56

    Article  CAS  Google Scholar 

  • Herrera-Estrella A, Chet I (1998) Biocontrol of bacteria and phytopathogenic fungi. In: Altman A (ed) Agricultural biotechnology. Marcel Dekker, New York, Basel

    Google Scholar 

  • Hewlett TE, Gerber JF, Smith KS (2004) In vitro culture of Pasteuria penetrans. In: Cook RC, Hunt DJ (eds) Nematology monographs and perspectives, vol 2. Proceedings of the fourth international congress of nematology, pp 175–185

    Google Scholar 

  • Hicks SJ, Theodoropoulos G, Carrington SD, Corfild AP (2000) The role of mucins in host-parasite interactions. Part I: protozoan parasites. Parasitol Today 16:476–481

    Article  PubMed  CAS  Google Scholar 

  • Hirsch P, Atkins SD, Mauchline TH, Morton CO, Davies KG, Kerry BR (2001) Techniques for studying nematophagous fungi in the root environment. Plant Soil 232:21–30

    Article  CAS  Google Scholar 

  • Hodge A (2006) Plastic plants and patchy soils. J Exp Botany 57:401–411

    Article  CAS  Google Scholar 

  • Hodgkin J, Partridge FA (2008) Caenorhabditis elegans meets microsporidia: the nematode killers from Paris. PLoS Biol 6:2634–2637

    Article  PubMed  CAS  Google Scholar 

  • Holterman M, van der Wurff A, van den Elsen S, van Megen H, Bongers T, Holovachov O, Bakker J, Helder J (2006) Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Mol Biol Evol 23:1792–1800

    Article  PubMed  CAS  Google Scholar 

  • Holterman M, Karssenm G, van den Elsen S, van Megen H, Bakker J, Helder J (2009) Small subunit rDNA-based phylogeny of the Tylenchida sheds light on relationships among some high-impact plant-parasitic nematodes and the evolution of plant feeding. Phytopathology 99:227–235

    Article  PubMed  CAS  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  Google Scholar 

  • Ihrmark K, Asmail N, Ubhayasekera W, Melin P, Stenlid J, Karlsson M (2010) Comparative molecular evolution of Trichoderma chitinases in response to mycoparasitic interaction. Evol Bioin 6:1–26

    CAS  Google Scholar 

  • Jones FGW, Jones MG (1974) Pests of field crops. Edward Arnold Ltd., London

    Google Scholar 

  • Kawecki TJ (1998) Red queen meets Santa Rosalia: arms races and the evolution of host specialization in organisms with parasitic lifestyles. Am Nat 152:635–651

    Article  PubMed  CAS  Google Scholar 

  • Kerry BR (1975) Fungi and the decrease of cereal cyst-nematode populations in cereal monoculture. EPPO Bull 5:353–361

    Article  Google Scholar 

  • Kerry BR, Crump DH (1977) Observations on fungal parasites of females and eggs of the cereal cyst-nematode, Heterodera avenae, and other cyst nematodes. Nematologica 23:193–201

    Article  Google Scholar 

  • Kerry BR, Crump DH, Mullen LA (1982) Studies of the cereal cyst nematode Heterodera avenae under continuous cereals, 1975–1978. II Fungal parasitism of nematode eggs and females. Ann App Biol 100:489–499

    Article  Google Scholar 

  • Kerry BR, Hirsch PR (2010) Ecology of Pochonia chlamydosporia in the rhizosphere at the population, whole organism and molecular scales. In: Davies KG, Spiegel Y (eds) Biological control of plant- parasitic nematodes: building coherence between microbial ecology and molecular mechanisms Springer, Berlin, Dortrecht

    Google Scholar 

  • Khan TA, Saxena SK (1997) Effect of root-dip treatment with fungal filtrates on root penetration, development and reproduction of Meloidogyne javanica on tomato. Int J Nematol 7:85–88

    Google Scholar 

  • Kojetin DJ, Thompson RJ, Benson LM, Naylor S, Waterman J, Davies KG, Opperman CH, Stephenson K, Hoch JA, Cavanagh J (2005) Structural analysis of divalent metals binding to the Bacillus subtilis response regulator Spo0F: the possibility for in vitro metalloregulation in the initiation of sporulation. Biometals 18:449–466

    Article  PubMed  CAS  Google Scholar 

  • Kubicek CP, Mach RL, Peterbauer CK, Lorito M (2001) Trichoderma: from genes to biocontrol. J Plant Pathol 83:11–23

    CAS  Google Scholar 

  • Kurtz J (2005) Specific memory within innate immune systems. Trends Immunol 26:186–192

    Article  PubMed  CAS  Google Scholar 

  • Linford MB (1937) Stimulated acticity of natural enemies of nematodes. Science 85:123–124

    Article  PubMed  CAS  Google Scholar 

  • Linford MB, Yap F, Oliveira JM (1938) Reduction of soil populations of the root-knot nematode during decomposition of organic matter. Soil Sci 45:127–141

    Article  Google Scholar 

  • Little TJ, O’Connor B, Colegrave NM, Watt K, Read AF (2003) Maternal transfer of strain specific immunity in an invertebrate Curr Biol 13:489–491

    Google Scholar 

  • Mallo GV, Kurz CL, Couillault C, Pujol N, Granjeaud S, Kohara Y, Ewbank JJ (2002) Inducible antibacterial defense system in C. elegans. Curr Biol 12:1209–1214

    Article  PubMed  CAS  Google Scholar 

  • Markovich NA, Kononova GL (2003) Lytic enzymes of Trichoderma and their role in plant defense from fungal diseases: a review. Appl Biochem Microbiol 39:389–400

    Article  CAS  Google Scholar 

  • McSorley R, Duncan LW (2004) Population dynamics. Nematology: advances and perspective, vol 1: nematode morphology, physiology and ecology. CABI International, Wallingford, pp 469–492

    Google Scholar 

  • McSorley R, Frederick JJ (2004) Effect of extraction method on perceived composition of the soil nematode community. Appl Soil Ecol 27:55–63

    Article  Google Scholar 

  • Mendoza De Gives PM, Davies KG, Clark SJ, Behnke JM (1999) Predatory behaviour of trapping fungi against srf mutants of Caenorhabditis elegans and different plant and animal parasitic nematodes. Parasitology 119:95–104

    Article  PubMed  Google Scholar 

  • Meyer SLF, Massoud SI, Chitwood DJ, Roberts DP (2000) Evaluation of Trichoderma virens and Burkholderia cepacia for antagonistic activity against root-knot nematode, Meloidogyne incognita. Nematology 2:871–879

    Article  Google Scholar 

  • Meyer SLF, Roberts DP, Chitwood DJ, Carta LK, Lumsden RD, Mao WL (2001) Application of Burkholderia cepacia and Trichoderma virens, alone and in combinations, against Meloidogyne incognita on bell pepper. Nematropica 31:75–86

    Google Scholar 

  • Millet AC, Ewbank JJ (2004) Immunity in Caenorhabditis elegans. Curr Opin Immunol 16:4–9

    Article  PubMed  CAS  Google Scholar 

  • Mitra RM, Shaw SL, Long SR (2004) Six nonnodulating plant mutants defective for Nod factor-induced transcriptional changes associated with the legume-rhizobia symbiosis. Proc Natl Acad Sci U S A 101:10217–10222

    Article  PubMed  CAS  Google Scholar 

  • Morton CO, Hirsch PR, Kerry B (2004) Infection of plant-parasitic nematodes by nematophagous fungi—a review of application of molecular biology to understand infection processes and to improve biological control. Nematology 6:161–170

    Article  CAS  Google Scholar 

  • Mouton L, Traunecker E, McElroy K, Du Pasquier L, Ebert D (2009) Identification of a polymorphic collagen-like protein in the crustacean bacteria Pasteuria ramosa. Res Microbiol 160:792–799

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay D, Sen U, Zapf J, Varughese KI (2004) Metals in the sporulation phosphorelay: manganese binding by the response regulator Spo0F. Acta Crystallogr Sect D: Biol Crystallogr 60:638–645

    Article  CAS  Google Scholar 

  • Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16s ribosomal-RNA. Appl Envon Microbiol 59:695–700

    CAS  Google Scholar 

  • Nordbring-Hertz B, Chet I (1988) Fungal lectins and agglutinins. In: Mirelman D (ed) Microbial lectins and agglutinins: properties and biological activity. Wiley, New York, pp 393–408

    Google Scholar 

  • Nordbring-Hertz B, Mattiasson B (1979) Action of a nematode-trapping fungus shows lectin-mediated host-microorganism interaction. Nature 281:477–479

    Article  CAS  Google Scholar 

  • O’Donnell AG (1994) Quantitative and qualitative analysis of fatty acids in the classification and identification of microorganisms. In: Hawksworth DL (ed) The Identification and characterisation of pest organisms. CAB International, Wallingford, pp 323–335

    Google Scholar 

  • O’Donnell AG, O’Donnell AG Colvan SR, Malosso E, Supaphol S (2005) Twenty years of molecular analysis of bacterial communities and what have we learned about function? In: Bardgett RD, Usher MB, Hopkins DW (eds) Biological diversity and function in soils. Cambridge University Press, Cambridge, pp 44–56

    Chapter  Google Scholar 

  • Opperman CH, Bird DM, Williamson VM, Rokhsar DS, Burke M, Cohn J, Cromer J, Diener S, Gajan J, Graham S, Houfek TD, Liu Q, Mitros T, Schaff J, Schaffer R, Scholl E, Sosinski BR, Thomas VP, Windham E (2008) Sequence and genetic map of Meloidogyne hapla: a compact nematode genome for plant parasitism. Proc Natl Acad Sci U S A 105:14802–14807

    Article  PubMed  CAS  Google Scholar 

  • O’Rourke D, Baban D, Demidova M, Mott R, Hodgkin J (2006) Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. Genome Res 16:1005–1016

    Article  PubMed  CAS  Google Scholar 

  • Powers T (2004) Nematode molecular diagnostics: from bands to barcodes. Ann Rev Phytopathol 42:367–383

    Article  CAS  Google Scholar 

  • Pramer D, Kuyama S (1963) Symposium on biochemical bases of morphogenesis in fungi. II: nemin and the nematode-trapping fungi. Bacteriol Rev 27:282–292

    PubMed  CAS  Google Scholar 

  • Pramer D, Stoll NR (1959) Nemin: a morphogenetic substance causing trap formation by predaceous fungi. Science 129:966–967

    Article  PubMed  CAS  Google Scholar 

  • Premachandran D, Pramer D (1984) Role of N-Acetylgalactosamine-specific protein in trapping of nematodes by Arthrobotrys oligospora. Appl Environ Microbiol 47:1358–1359

    PubMed  CAS  Google Scholar 

  • Rao MS, Reddy PP, Nagesh M (1998) Evaluation of plant based formulations of Trichoderma harzianum for the management of Meloidogyne incognita on egg plant. Nematol Medit 26:59–62

    Google Scholar 

  • Reddy PP, Rao MS, Nagesh M (1996) Management of citrus nematode, Tylenchulus semipenetrans, by integration of Trichoderma harzianum with oil cakes. Nematol Medit 24:265–267

    Google Scholar 

  • Reitz M, Rudolph K, Schroder I, Hoffmann-Hergarten S, Hallmann J, Sikora RA (2000) Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to the infection by the cyst nematode Globodera pallida. Appl Environm Microbiol 66:3515–3518

    Article  CAS  Google Scholar 

  • Robinson MP, Butcher G, Curtis RH, Davies KG, Evans K (1993) Characterisation of a 34kD protein from potato cyst nematodes, using monoclonal antibodies with potential for species diagnosis. Ann Appl Biol 123:337–347

    Article  CAS  Google Scholar 

  • Rosén S, Ek B, Rask L, Tunlid A (1992) Purification and characterization of a surface lectin from the nematode-trapping fungus Arthrobotrys oligospora. J Gen Microbiol 138:2663–2672

    PubMed  Google Scholar 

  • Saiki R, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N (1985) Enzymic amplification of β-globulin genomic sequences and restriction site analysis for the diagnosis of sickle cell anemia. Science 230:1350–1354

    Article  PubMed  CAS  Google Scholar 

  • Sayre RM, Starr MP (1985) Pasteuria penetrans (ex Thorne, 1940) nom. rev., comb. n., sp. n., a mycelial and endospore-forming bacterium parasitic in plant-parasitic nematodes. Proc Helminthol Soc Wash 52:149–165

    Google Scholar 

  • Sayre RM, Wergin WP, Schmidt JM, Starr MP (1991) Pasteuria nishizawae sp. nov., a mycelial and endosporeforming bacterium parasitic on cyst nematodes of genera Heterodera and Globodera. Res Microbiol 142:551–564

    Article  PubMed  CAS  Google Scholar 

  • Sharon N, Lis H (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiol 14:53R–62R

    Article  CAS  Google Scholar 

  • Sharon E, Bar-Eyal M, Chet I (2001) Biocontrol of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 91:687–669

    Article  Google Scholar 

  • Sharon E, Chet I, Viterbo A, Bar-Eyal M, Nagan H, Samuels GJ, Spiegel Y (2007) Parasitism of Trichoderma on Meloidogyne javanica and role of the gelatinous matrix. Eur J Plant Pathol 118:247–225

    Article  Google Scholar 

  • Sharon E, Chet I, Spiegel Y (2009) Improved attachment and parasitism of Trichoderma on Meloidogyne javanica in vitro. Eur J Plant Pathol 123:291–299

    Article  CAS  Google Scholar 

  • Sharon E, Chet I, Spiegel Y (2010) Trichoderma as a biocontrol agent. In: Davies KG, Spiegel Y (eds) Biological control of plant- parasitic nematodes: building coherence between microbial ecology and molecular mechanisms. Springer, Berlin, Dortrecht

    Google Scholar 

  • Shoresh M, Harman G E (2008) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–2163

    Article  PubMed  CAS  Google Scholar 

  • Spiegel Y, Sharon E, Bar-Eyal M (2007) Evaluation and mode of action of Trichoderma isolates as biocontrol agents against plant-parasitic nematodes. IOBC/WPRS Bull 30:129–133

    Google Scholar 

  • Starr MP, Sayre RM (1988) Pasteuria thornei sp. nov. and Pasteuria penetrans sensu stricto emend., mycelial and endospore-forming bacteria parasitic, respectively, on plant-parasitic nematodes of the genera Pratylenchus and Meloidogyne. Ann Inst Pasteur Microbiol 139:11–31

    Article  PubMed  CAS  Google Scholar 

  • Steyaert JM, Ridgway HJ, Elad Y, Stewart A (2003) Genetic basis of mycoparasitism: a mechanism of biological control by species of Trichoderma. N Zeal J Crop Hortic Sci 31:281–291

    Article  Google Scholar 

  • Stirling GR (1991) Biological control of plant parasitic nematodes: progress, problems and prospects. CAB International, Wallingford

    Google Scholar 

  • Stirling GR, Wachtel MF (1980) Mass production of Bacillus penetrans for the biological control of root-knot nematodes. Nematologica 26:308–312

    Article  Google Scholar 

  • Straalen NM, Roelofs D (2006) An introduction to ecological genomics. Oxford University Press, Oxford

    Google Scholar 

  • Strous GJ, Dekker J (1992) Mucin-type glycoproteins. Crit Rev Biochem Mol Biol 27:57–92

    Article  PubMed  CAS  Google Scholar 

  • Sylvestre P, Couture-Tosi E, Mock M (2002) A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol Microbiol 45:169–178

    Article  PubMed  CAS  Google Scholar 

  • Sylvestre P, Couture-Tosi E, Mock M (2003) Polymorphism in the collagen-like region of the Bacillus anthracis BclA protein leads to variation in length in the exosporium filament length. J Bacteriol 185:5155–5163

    Article  CAS  Google Scholar 

  • Sylvestre P, Couture-Tosi E, Mock M (2005) Contribution of ExsFA and ExsFB proteins to the localisation of BclA on the spoe surface and to the stability of the Bacillus anthracis exosporium. J Bacteriol 187:5122–5128

    Article  PubMed  CAS  Google Scholar 

  • Szekeres A, Leitgeb B, Kredics L, Antal, ZS, Hatvani, L, Manczinger, L, Vagvolgyi, CS (2005) Peptaibols and related peptaibiotics of Trichoderma. A review. Acta Microbiol Immunol Hung 52:137–168

    Article  PubMed  CAS  Google Scholar 

  • Szybalski W (1974) In vivo and in vitro initiation of transcription. In: Kohn A, Shatkay A (Eds) Control of gene expression and discussion. Plenum Press, New York

    Google Scholar 

  • Tetteh KKA, Loukas A, Tripp C, Maizels RM (1999) Identification of abundantly expressed novel and conserved genes from the infective larval stage of Toxacara canis by an expressed sequence tag strategy. Infect Immunol 67:4771–4779

    CAS  Google Scholar 

  • Thorne G (1927) The life history, habits and economic importance of some mononchs. J Agric Res 34:265–286

    Google Scholar 

  • Theodoropoulos G, Hicks SJ, Corfield AP, Miller BG, Carrington SD (2001) The role of mucins in host-parasite interactions: Part II: Helminth parasites. Trends Parasitol 17:130–135

    Article  PubMed  CAS  Google Scholar 

  • Trudgill DL (1991) Resistance to and tolerance of plant parasitic nematodes in plants. Annu Rev Phytopathol 29:167–192

    Article  Google Scholar 

  • Tunlid A, Ahrén D (2010) Molecular mechanisms of the interaction between nematode-trapping fungi and nematodes—lessons from genomics. In: Davies KG, Spiegel Y (eds) Biological control of plant- parasitic nematodes: building coherence between microbial ecology and molecular mechanisms. Springer, Berlin, Dortrecht

    Google Scholar 

  • Tunlid A, Ã…hman J, Oliver RP (1999) Transformation of the nematode-trapping fungus Arthrobotrys oligospora. FEMS Microbiol Lett 173:111–116

    Article  PubMed  CAS  Google Scholar 

  • Van den Berg W, Rossing WAH (2005) Generalised linear dynamics of a plant-parasitic nematode population and the economic evaluation of crop rotations. J Nematol 37:55–65

    Google Scholar 

  • Van der Putten WH, vet LEM, Harvey JA, Harvey JA, Wackers FL (2001) Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends Ecol Evol 16:547–554

    Article  Google Scholar 

  • Van Elsas JD, Duarte GF, Keijzer-Wolters A, Smit E (2000) Analysis of the dynamics of fungal communites in soil via fungal-specific PCR of soil DNA followed by denaturing gradient gel electrophoresis. J Microbiol Methods 43:133–151

    Article  PubMed  Google Scholar 

  • Van Valen L (1973) A new evolutionary law. Evol Theory 1:1–30

    Google Scholar 

  • Van Valen L (1976) The red queen. Am Nat 110:809–810

    Article  Google Scholar 

  • Varley GC, Gradwell GR, Hassell MP (1973) Insect population ecology: an analytical approach. Blackwell, Oxford

    Google Scholar 

  • Viterbo A, Montero M, Ramot O, Friesem D, Monte E, Llobell A, Chet I (2002a) Expression regulation of the endochitinase chit36 from Trichoderma asperellum (T. harzianum T-203). Curr Genet 42:114–122

    Article  CAS  Google Scholar 

  • Viterbo A, Ramot O, Chernin L, Chet I (2002b) Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie van Leeuwenhoek 81:549–556

    Article  CAS  Google Scholar 

  • Viterbo A, Inbar J, Hadar Y, Chet I (2007) Plant disease biocontrol and induced resistance via fungal mycoparasites. In: Kubicek CP, Deruzhinina IS (eds) The mycota IV: environmental and microbial relationships, 2nd edn. Springer, Berlin, Dortrecht

    Google Scholar 

  • Waite IS, O’Donnell AG, Harrison A, Davies JT, Colvan SR, Ekschmitt K, Dogan H, Wolters V, Bongers T, Bongers M, Bakonyi G, Nagy P, Papatheodorou EM, Stamou GP, Bostrom S (2003) Design and evaluation of nematode 18S rDNA primers for PCR and denaturing gradient gel electrophoresis (DGGE) of soil community DNA. Soil Biol Biochem 35:1165–1173

    Article  CAS  Google Scholar 

  • Watt M, Silk WK, Passioura JB (2006) Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere. Ann of Botany 97:839–855

    Article  Google Scholar 

  • Whipps JM, Davies KG (2000) Success in biological control of plant pathogens and nematodes by microorganisms. In: Gurr G, Wratten S (eds) Biological control: measures of success. Kluwer, Dordrecht

    Google Scholar 

  • Wiest A, Grzegorski D, Xu B-W, Goulard C, Rebuffat S, Ebbole DJ, Bodo B, Kenerley C (2002) Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem 277:20862–20868

    Article  PubMed  CAS  Google Scholar 

  • Windham GL, Windham MT, Williams WP (1989) Effects of Trichoderma spp. on maize growth and Meloidogyne arenaria reproduction. Plant Dis 73:493–494

    Article  Google Scholar 

  • Woo SL, Ruocco M, Vinale F, Lorito M (2009) The Trichoderma-plant-pathogen interaction: understanding the mechanisms and improving biocontrol. In: Elad Y, Maurhofer M, Keel C et al (eds) Biological control of fungal and bacterial plant pathogens. IOBC/wprs Bull 43:83–88

    Google Scholar 

  • Wood FH (1973) Nematode feeding relationships. Feeding relationships of soil-dwelling nematodes. Soil Biol Biochem 5:528–537

    Article  Google Scholar 

  • Wu TH, Ayres E, Li G et al (2009) Molecular profiling of soil animal diversity in natural ecosystems: incongruence of molecular and morphological results. Soil Biol Biochem 41:849–857

    Article  CAS  Google Scholar 

  • Wurst S, van Beersum S, Wagenaar R, Bakx-Schotman T, Drigo B, Janzik I, Lanoue A, Van der Putten WH (2009) Plant defence against nematodes is not mediated by changes in the soil microbial community. Funct Ecol 23:488–495

    Article  Google Scholar 

  • Yeates GW, Bongers T, de Goede RGM, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. J Nematol 25(3):315–331

    PubMed  CAS  Google Scholar 

  • Yedidia I, Srivastva AK, Kapulnik Y et al (2001) Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 235:235–242

    Google Scholar 

  • Yedidia I, Shoresh M, Kerem Z et al (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69:7343–7353

    Google Scholar 

  • Zapf JW, Hoch JA, Whiteley JM (1996) A phosphotransferase activity of the Bacillus subtilis sporulation protein Spo0F that employs phosphoramidate substrates. Biochemistry 35:2926–2933

    Google Scholar 

  • Zheng SJ, Dicke M (2008) Ecological genomics of plant - insect interactions: from gene to community. Plant Physiol 146:812–817

    Google Scholar 

Download references

Acknowledgement

KGD would like to acknowledge the support of the Biotechnological and Biological Sciences Research Council of the United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith G. Davies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Davies, K.G., Spiegel, Y. (2011). Biological Control of Plant-Parasitic Nematodes: Towards Understanding Field Variation Through Molecular Mechanisms. In: Jones, J., Gheysen, G., Fenoll, C. (eds) Genomics and Molecular Genetics of Plant-Nematode Interactions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0434-3_23

Download citation

Publish with us

Policies and ethics