Skip to main content

Non-native Proteins as Newly-Identified Targets of Heavy Metals and Metalloids

  • Chapter
  • First Online:
Cellular Effects of Heavy Metals

Abstract

Heavy metal ions such as Cd2+, Hg2+ and Pb2+ as well as metalloid arsenic(III) species very efficiently inhibit the refolding of chemically denatured proteins (IC50 values in nanomolar range). In their presence, the proteins misfold and aggregate. Denatured proteins appear to be much more susceptible to form high-affinity pluridentate complexes with heavy metals and metalloids than native proteins. In a denatured protein, the potential ligands of metal ions, the most important ones being cysteine and histidine residues, are more easily accessible for the toxic agents; moreover, denatured proteins with more flexible and motile backbones are more likely than folded native proteins to tolerate the formation of pluridentate protein–metal complexes with their defined geometry. In cells, the interference of metals with nascent and other non-native forms of proteins might manifest itself both in a quantitative deficiency of the affected proteins and the formation of proteotoxic aggregates. Possibly, the toxic effects of heavy metals and metalloids arise not only from their interaction with specific, particularly susceptible native proteins but also from a general derailing of protein folding . The toxic scope of heavy metals and metalloids thus could be more pleiotropic and extensive than assumed so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahsan N, Renaut J, Komatsu S (2009) Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics 9:2602–2621

    Article  PubMed  CAS  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    Article  PubMed  CAS  Google Scholar 

  • Bánhegyi G, Benedetti A, Csala M, Mandl J (2007) Stress on redox. FEBS Lett 581:3634–3640

    Article  PubMed  Google Scholar 

  • Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214

    Article  PubMed  CAS  Google Scholar 

  • Bolin CM, Basha R, Cox D, Zawia NH, Maloney B, Lahiri DK, Cardozo-Pelaez F (2006) Exposure to lead and the developmental origin of oxidative DNA damage in the aging brain. FASEB J 20:788–790

    PubMed  CAS  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  PubMed  CAS  Google Scholar 

  • Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313:1604–1610

    Article  PubMed  CAS  Google Scholar 

  • De Los Rios P, Ben-Zvi A, Slutsky O, Azem A, Goloubinoff P (2006) Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. Proc Natl Acad Sci U S A 103:6166–6171

    Article  PubMed  CAS  Google Scholar 

  • Fink AL (2005) Natively unfolded proteins. Curr Opin Struct Biol 15:35–41

    Article  PubMed  CAS  Google Scholar 

  • Fraústo da Silva JJR, Williams RJP (1993) The biological chemistry of the elements: the inorganic chemistry of life. Clarendon Press, Oxford

    Google Scholar 

  • Freisinger E (2008) Plant MTs-long neglected members of the metallothionein superfamily. Dalton Trans 47:6663–6675

    Article  PubMed  Google Scholar 

  • Georgopoulos C, Welch WJ (1993) Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol 9:601–634

    Article  PubMed  CAS  Google Scholar 

  • Gidalevitz T, Ben-Zvi A, Ho KH, Brignull HR, Morimoto RI (2006) Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 311:1471–1474

    Article  PubMed  CAS  Google Scholar 

  • Gurd FR, Wilcox PE (1956) Complex formation between metallic cations and proteins, peptides and amino acids. Adv Protein Chem 11:311–427

    Article  PubMed  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Han SG, Castranova V, Vallyathan V (2007) Comparative cytotoxicity of cadmium and mercury in a human bronchial epithelial cell line (BEAS-2B) and its role in oxidative stress and induction of heat shock protein 70. J Toxicol Environ Health A 70:852–860

    Article  PubMed  CAS  Google Scholar 

  • Han W, Christen P (2003) Mechanism of the targeting action of DnaJ in the DnaK molecular chaperone system. J Biol Chem 278:19038–19043

    Article  PubMed  CAS  Google Scholar 

  • Hinault MP, Ben-Zvi A, Goloubinoff P (2006) Chaperones and proteases: cellular fold-controlling factors of proteins in neurodegenerative diseases and aging. J Mol Neurosci 30:249–265

    Article  PubMed  CAS  Google Scholar 

  • Hu H (2005) Heavy metal poisoning. In: Kasper DL et al (eds) Harrison’s principles of internal medicine, 16th edn. McGraw-Hill, New York, pp 2577–2580

    Google Scholar 

  • Johnston D, Oppermann H, Jackson J, Levinson W (1980) Induction of four proteins in chick embryo cells by sodium arsenite. J Biol Chem 255:6975–6980

    PubMed  CAS  Google Scholar 

  • Kägi JHR, Hapke H-J (1984) Biochemical interactions of mercury, cadmium and lead. In: Nriagu JO (ed) Changing metal cycles and human health. Springer, Berlin, pp 237–250

    Google Scholar 

  • Kägi JHR, Schäffer A (1988) Biochemistry of metallothionein. Biochemistry 27:8509–8515

    Article  PubMed  Google Scholar 

  • Kirkpatrick DS, Dale KV, Catania JM, Gandolfi AJ (2003) Low-level arsenite causes accumulation of ubiquitinated proteins in rabbit renal cortical slices and HEK293 cells. Toxicol Appl Pharmacol 186:101–109

    Article  PubMed  CAS  Google Scholar 

  • Klaassen CD, Liu J, Diwan BA (2009) Metallothionein protection of cadmium toxicity. Toxicol Appl Pharmacol 238:215–220

    Article  PubMed  CAS  Google Scholar 

  • Kosnett MJ (2007) Heavy metal intoxication and chelators. In: Katzung BG (ed) Basic and clinical pharmacology, 10th edn. McGraw-Hill, New York, pp 945–957

    Google Scholar 

  • Kusakabe T, Nakajima K, Nakazato K, Suzuki K, Takada H, Satoh T, Oikawa M, Arakawa K, Nagamine T (2008) Changes of heavy metal, metallothionein and heat shock proteins in Sertoli cells induced by cadmium exposure. Toxicol In Vitro 22:1469–1475

    Article  PubMed  CAS  Google Scholar 

  • LeVine H 3rd (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol 309:274–284

    Article  PubMed  CAS  Google Scholar 

  • Levinson W, Oppermann H, Jackson J (1980) Transition series metals and sulfhydryl reagents induce the synthesis of four proteins in eukaryotic cells. Biochim Biophys Acta 606:170–180

    Article  PubMed  CAS  Google Scholar 

  • Means GE, Feeney RE (1971) Chemical modification of proteins. Holden-Day, San Francisco

    Google Scholar 

  • Monnet-Tschudi F, Zurich MG, Boschat C, Corbaz A, Honegger P (2006) Involvement of environmental mercury and lead in the etiology of neurodegenerative diseases. Rev Environ Health 21:105–117

    Article  PubMed  CAS  Google Scholar 

  • Othumpangat S, Kashon M, Joseph P (2005) Eukaryotic translation initiation factor 4E is a cellular target for toxicity and death due to exposure to cadmium chloride. J Biol Chem 280:25162–25169

    Article  PubMed  CAS  Google Scholar 

  • Palleros DR, Reid KL, Shi L, Welch WJ, Fink AL (1993) ATP-induced protein-Hsp70 complex dissociation requires K+ but not ATP hydrolysis. Nature 365:664–666

    Article  PubMed  CAS  Google Scholar 

  • Ramadan D, Rancy PC, Nagarkar RP, Schneider JP, Thorpe C (2009) Arsenic(III) species inhibit oxidative protein folding in vitro. Biochemistry 48:424–432

    Article  PubMed  CAS  Google Scholar 

  • Rowley B, Monestier M (2005) Mechanisms of heavy metal-induced autoimmunity. Mol Immunol 42:833–838

    Article  PubMed  CAS  Google Scholar 

  • Schmid D, Baici A, Gehring H, Christen P (1994) Kinetics of molecular chaperone action. Science 263:971–973

    Article  PubMed  CAS  Google Scholar 

  • Sharma SK, Goloubinoff P, Christen P (2008) Heavy metal ions are potent inhibitors of protein folding. Biochem Biophys Res Commun 372:341–345

    Article  PubMed  CAS  Google Scholar 

  • Sharma SK, Christen P, Goloubinoff P (2009) Disaggregating chaperones: an unfolding story. Curr Protein Pept Sci 10:432–446

    Article  PubMed  CAS  Google Scholar 

  • Siegenthaler RK, Christen P (2006) Tuning of DnaK chaperone action by nonnative protein sensor DnaJ and thermosensor GrpE. J Biol Chem 281:34448–34456

    Article  PubMed  CAS  Google Scholar 

  • Stanhill A, Haynes CM, Zhang Y, Min G, Steele MC, Kalinina J, Martinez E, Pickart CM, Kong XP, Ron D (2006) An arsenite-inducible 19S regulatory particle-associated protein adapts proteasomes to proteotoxicity. Mol Cell 23:875–885

    Article  PubMed  CAS  Google Scholar 

  • Vallee BL, Ulmer DD (1972) Biochemical effects of mercury, cadmium, and lead. Annu Rev Biochem 41:91–128

    Article  PubMed  CAS  Google Scholar 

  • Wagner M, Hermanns I, Bittinger F, Kirkpatrick CJ (1999) Induction of stress proteins in human endothelial cells by heavy metal ions and heat shock. Am J Physiol 277:L1026–1033

    PubMed  CAS  Google Scholar 

  • Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Chen Z (2008) Acute promyelocytic leukemia: from highly fatal to highly curable. Blood 111:2505–2515

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Basha MR, Brock B, Cox DP, Cardozo-Pelaez F, McPherson CA, Harry J, Rice DC, Maloney B, Chen D, Lahiri DK, Zawia NH (2008) Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J Neurosci 28:3–9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the Swiss National Science Foundation (3100A0-109290) to PG. We thank J.H.R. Kägi for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Christen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sharma, S.K., Goloubinoff, P., Christen, P. (2011). Non-native Proteins as Newly-Identified Targets of Heavy Metals and Metalloids. In: Banfalvi, G. (eds) Cellular Effects of Heavy Metals. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0428-2_12

Download citation

Publish with us

Policies and ethics