Skip to main content

The Flamelet Model for Non-Premixed Combustion

  • Chapter
Turbulent Combustion Modeling

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 95))

Abstract

The flamelet approach for non-premixed combustion is based on the description of the turbulent flame as a collection of laminar flame elements embedded in a turbulent flow and interacting with it. The local structure of the flame at each point of the flame front is supposed to be similar to a laminar flamelet, while the interaction with turbulence is reduced to the front evolution. This view is supported by the introduction of the mixture fraction, which allows to decouple the turbulent transport and the flame structure. One key parameter of the flamelet structure is the scalar dissipation rate, which controls the reactant fluxes to the reaction zone and is related to the flow velocity gradients. Probability density functions or flame surface density are then used to describe the turbulent flame and relate the flamelet description to the turbulent flame front. As unsteady effects may become significant, various transient flamelet approaches also exist to take into account the flame history. The flamelet approach may be used either in the RANS or LES context and is still being developed to account for additional complexities such as heat losses and sprays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barths, H., Hasse, C., Bikas, G., Peters, N.: Simulation of combustion in direct injection diesel engines using a Eulerian particle flamelet model. Proc. Combust. Inst. 28, 1161–1168 (2000)

    Article  Google Scholar 

  2. Barths, H., Peters, N., Brehm, N., Mack, A., Pfitzner, M., Smiljanovski, V.: Simulation of pollutant formation in a gas turbine combustor using unsteady flamelets. Proc. Combust. Inst. 27, 1841–1847 (1998)

    Google Scholar 

  3. Bilger, R.: The structure of turbulent non-premixed flames. Proc. Combust. Inst. 22, 475–488 (1988)

    Google Scholar 

  4. Blanquart, G., Pitsch, H.: Modeling autoignition in non-premixed turbulent combustion using a stochastic flamelet approach. Proc. Combust. Inst. 30, 2745–2753 (2005)

    Article  Google Scholar 

  5. Bradley, D., Gaskell, P.H., Gu, X.J.: The mathematical modeling of liftoff and blowoff of turbulent non-premixed methane jet flames at high strain rates. Proc. Combust. Inst. 27, 1199–1206 (1998)

    Google Scholar 

  6. Bray, K.N.C., Champion, M., Libby, P.: The interaction between turbulence and chemistry in premixed turbulent flames. Turbulent Reactive Flows, Lecture notes in engineering, Springer-Verlag pp. 541–563 (1989)

    Google Scholar 

  7. Bruel, P., Rogg, B., Bray, K.N.C.: On auto-ignition in laminar and turbulent non-premixed systems. Proc. Combust. Inst. 23, 759–766 (1990)

    Google Scholar 

  8. Chang, C., Zhang, Y., Bray, K.N.C., Rogg, B.: Modelling and simulation of autoignition under simulated diesel-engine conditions. Combust. Sci. Technol. 113–114, 205–219 (1996)

    Article  Google Scholar 

  9. Chen, M., Herrmann, M., Peters, N.: Flamelet modeling of lifted turbulent methane/air and propane/air jet diffusion flames. Proc. Combust. Inst. 28, 167–174 (2000)

    Article  Google Scholar 

  10. Cook, D.J., Pitsch, H., Chen, J.H., Hawkes, E.R.: Flamelet-based modelling of auto-ignition with thermal inhomogeneities for application to HCCI engines. Proc. Combust. Inst. 31, 2903–2911 (2007)

    Article  Google Scholar 

  11. Correa, C., Niemann, H., Schramm, B., Warnatz, J.: Reaction mechanism reduction for higher hydrocarbons by the ILDM method. Proc. Combust. Inst. 28, 1607–1614 (2000)

    Article  Google Scholar 

  12. Cuenot, B., Egolfopoulos, F., Poinsot, T.: An unsteady laminar flamelet model for non-premixed combustion. Combust. Theory Model. 4, 77–97 (2000)

    Article  MATH  Google Scholar 

  13. Cuenot, B., Poinsot, T.: Effects of curvature and unsteadiness in diffusion flames. Implications for turbulent diffusion flames. Proc. Combust. Inst. 25, 1383–1390 (1994)

    Google Scholar 

  14. Darabiha, N.: Transient behaviour of laminar counterflow hydrogen-air diffusion flames with complex chemistry. Combust. Sci. Technol. 86, 163–181 (1992)

    Article  Google Scholar 

  15. Effelsberg, E., Peters, N.: Scalar dissipation rates in turbulent jets and jet diffusion flames. Proc. Combust. Inst. 22, 693–700 (1988)

    Google Scholar 

  16. Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combust. Flame 140, 174–160 (2005)

    Article  Google Scholar 

  17. Ge, H., Gutheil, E.: Simulation of a turbulent spray flame using coupled PDF gas phase and spray flamelet modeling. Combust. Flame 153, 173–185 (2008)

    Article  Google Scholar 

  18. Goldin, G., Menon, S.: A scalar pdf construction model for turbulent non-premixed combustion. Combust. Flame 155, 70–89 (2008)

    Article  Google Scholar 

  19. Gouldin, F., Bray, K., Chen, J.: Chemical closure model for fractal flamelets. Combust. Flame 77, 241 (1989)

    Article  Google Scholar 

  20. Hasse, C., Peters, N.: A two mixture fraction flamelet model applied to split injections in a DI diesel engine. Proc. Combust. Inst. 30, 2755–2762 (2005)

    Article  Google Scholar 

  21. Haworth, D., Drake, M., Pope, S., Blint, R.: The importance of time-dependent flame structures in stretched laminar flamelet models for turbulent jet diffusion flames. Proc. Combust. Inst. 22, 589–597 (1988)

    Google Scholar 

  22. Ihme, M., Pitsch, H.: Prediction of extinction and re-ignition in non-premixed turbulent flames using a flamelet/progress variable model 1. A priori study and presumed pdf closure. Combust. Flame 155, 70–89 (2008)

    Article  Google Scholar 

  23. Kortschik, C., Honnet, S., Peters, N.: Influence of curvature on the onset of autoignition in a corrugated counterflow mixing field. Combust. Flame 142, 140–152 (2005)

    Article  Google Scholar 

  24. Lehtiniemi, H., Mauss, F., Balthasar, M., Magnusson, I.: Modeling diesel spray ignition using detailed chemistry with a progress variable approach. Combust. Sci. Technol. 178, 1977–1997 (2006)

    Article  Google Scholar 

  25. Liñan, A.: The asymptotic structure of counterflow diffusion flames for large activation energies. Acta Astronautica 1, 1007–1039 (1974)

    Article  Google Scholar 

  26. Ma, C.Y., Mahmud, T., Fairweather, M., Hampartsoumian, E., Gaskell, P.H.: Prediction of lifted, non-premixed turbulent flames using a mixedness-reactedness flamelet model with radiation heat loss. Combust. Flame 128, 60–73 (2002)

    Article  Google Scholar 

  27. Marble, F.E., Broadwell, J.: The coherent flame model of non-premixed turbulent combustion. Report TRW-9-PU (1977)

    Google Scholar 

  28. Mauss, F., Keller, D., Peters, N.: A Lagrangian simulation of flamelet extinction and re-ignition in turbulent jet diffusion flames. Proc. Combust. Inst. 23, 693–698 (1990)

    Google Scholar 

  29. Meneveau, C., Poinsot, T.: Stretching and quenching of flamelets in premixed turbulent combustion. Combust. Flame 86, 311–332 (1991)

    Article  Google Scholar 

  30. Müller, C.M., Breitbach, H., Peters, N.: Partially premixed turbulent flame propagation in jet flames. Proc. Combust. Inst. 25, 1099–1106 (1994)

    Google Scholar 

  31. Peters, N.: Laminar diffusion flamelets in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 3, 319–339 (1984)

    Article  Google Scholar 

  32. Peters, N.: Turbulent Combustion. Cambridge University Press (2000)

    Book  MATH  Google Scholar 

  33. Pierce, C.D., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  34. Pitsch, H.: Large-eddy simulation of turbulent combustion. Ann. Rev. Fluid Mech. 38, 453–482 (2006)

    Article  MathSciNet  Google Scholar 

  35. Pitsch, H., Barths, H., Peters, N.: Three-dimensional modelling of NOx and soot formation in DI-diesel engines using detailed chemistry based on the interactive flamelet approach. SAE Paper 962057, 103–117 (1996)

    Google Scholar 

  36. Pitsch, H., Chen, M., Peters, N.: Unsteady flamelet modelling of turbulent hydrogen-air diffusion flames. Proc. Combust. Inst. 27, 1057–1064 (1998)

    Google Scholar 

  37. Pitsch, H., Ihme, M.: An unsteady / flamelet progress variable method for LES of nonpremixed turbulent combustion. In: 43rd AIAA Aerospace Sciences Meeting and Exhibit, pp. 1–14 (2005)

    Google Scholar 

  38. Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. R.T. Edwards, Inc., Philadelphia (2005)

    Google Scholar 

  39. Pope, S.: The evolution of surfaces in turbulence. Int. J. Engng. Sci. 26, 445–469 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  40. Pope, S.B.: Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combustion Theory and Modelling 1, 41–63 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  41. Tap, F.A., Hilbert, R., Thevenin, D., Veynante, D.: A generalized flame surface density modelling approach for the auto-ignition of a turbulent non-premixed system. Combust. Theory Model. 8, 165–193 (2004)

    Article  Google Scholar 

  42. Tap, F.A., Veynante, D.: Simulation of flame lift-off on a diesel jet using a generalized flame surface density modeling approach. Proc. Combust. Inst. 30, 919–926 (2005)

    Article  Google Scholar 

  43. Trouve, A., Poinsot, T.: The evolution equation for the flame surface density. J. Fluid Mech. 278, 1–31 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  44. Vervisch, L., Bidaux, E., Bray, K., Kollmann, W.: Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches. Phys. Fluids 7, 2496–2503 (1995)

    Article  MATH  Google Scholar 

  45. Veynante, D., Vervisch, L.: Turbulent combustion modeling. Prog. Energy Combust. Sci. 28, 193–266 (2002)

    Article  Google Scholar 

  46. Wan, Y., Pitsch, H., Peters, N.: Simulation of autoignition delay and location of fuel sprays under diesel-engine relevant conditions. Journal of Engines 106, 1611–1621 (1997)

    Google Scholar 

  47. Williams, F.A.: A review of some theoretical combustions of turbulent flame structure. AGARD Conference Proceedings II.1, 1–25 (1975)

    Google Scholar 

  48. Woelfert, A., Nau, M., Maas, U., Warnatz, J.: Application of automatically simplified chemical kinetics in PDF calculations of turbulent methane-air diffusion flames. IWR-SFB-359–94-69 (1994)

    Google Scholar 

  49. Zhang, Y., Rogg, B., Bray, K.N.C.: 2-D simulation of turbulent autoignition with transient laminar flamelet source term closure. Combust. Sci. Technol. 105, 211–227 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bénédicte Cuenot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Cuenot, B. (2011). The Flamelet Model for Non-Premixed Combustion. In: Echekki, T., Mastorakos, E. (eds) Turbulent Combustion Modeling. Fluid Mechanics and Its Applications, vol 95. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0412-1_3

Download citation

Publish with us

Policies and ethics