Skip to main content

The Heterogeneous Multiscale Methods with Application to Combustion

  • Chapter
Book cover Turbulent Combustion Modeling

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 95))

  • 5664 Accesses

Abstract

The framework of the heterogeneous multiscale methods (HMM) is briefly reviewed. Both the original HMM and the seamless HMM are discussed. Applications to interface capturing and flame front tracking are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brandt, A.: Multiscale scientific computation: Review 2001. In: Barth, T.J., et al. (eds.) Multiscale and Multiresolution Methods: Theory and Applications, Yosemite Educational Symposium Conf. Proc., 2000, Lecture Notes in Comp. Sci. and Engrg. 20, pp. 3–96. Springer-Verlag, New York (2002)

    Google Scholar 

  3. Cheng, L.-T., E, W.: The heterogeneous multiscale method for interface dynamics. In Cheng, S.Y., et al. (eds.) Recent Advances in Scientific Computing and Partial Differential Equations. Contemp. Math. 330, pp. 43–53. Amer. Math. Soc., Providence (2003)

    Google Scholar 

  4. Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12–26 (1967)

    Article  MATH  Google Scholar 

  5. Colella, P., Majda, A., Roytburd, V.: Theoretical and numerical structure for reacting shock waves. SIAM J. Sci. Statist. Comput. 7, 1059–1080 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. Colella, P., Woodward, P.: The piecewise-parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174–201 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  7. E, W.: Analysis of the heterogeneous multiscale method for ordinary differential equations. Comm. Math. Sci. 1, 423–436 (2003)

    MATH  MathSciNet  Google Scholar 

  8. E, W., Engquist, B.: The heterogeneous multi-scale methods. Comm. Math. Sci. 1, 87–133 (2003)

    MATH  MathSciNet  Google Scholar 

  9. E, W., Engquist, B.: Multiscale modeling and computation. Notices of the AMS, 50, 1062–1070 (2003)

    MATH  MathSciNet  Google Scholar 

  10. E, W., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: Heterogeneous multiscale methods: A review. Comm. Comput. Phys. 3, 367–450 (2007)

    MathSciNet  Google Scholar 

  11. E, W., Lu, J.: Seamless multiscale modeling via dynamics on fiber bundles. Comm. Math. Sci. 5, 649–663 (2007)

    MATH  MathSciNet  Google Scholar 

  12. E, W., Ren, W., Vanden-Eijnden, E.: A general strategy for designing seamless multiscale methods. J. Comput. Phys. 228, 5437–5453 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  13. Engquist, B., Osher, S.: Stable and entropy satisfying approximations for transonic flow calculations. Math. Comp. 34, 45–75 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  14. Engquist, B., Tsai, R.: Heterogeneous multiscale method for a class of stiff ODEs. Math. Comp. 74, 1707–1742 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fan, H., Jin, S.: Front motion in muti-dimensional viscous conservation laws with stiff source terms driven by mean curvature and front thickness. Quart. Appl. Math. 61, 701–721 (2003)

    MATH  MathSciNet  Google Scholar 

  16. Fatkullin, I., Vanden-Eijnden, E.: A computational strategy for multiscale systems with applications to Lorenz 96 model. J. Comput. Phys. 200, 605–638 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Glimm, J., McBryan, O., Menikoff, R., Sharp, D.H.: Front tracking applied to Rayleigh-Taylor instability. SIAM J. Sci. Statist. Comput. 7, 230–251 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  18. Helzel, C., LeVeque, R.J., Warnecke, G.: A modified fractional step method for the accurate approximation of detonation waves. SIAM J. Sci. Comput. 22, 1489–1510 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kevrekidis, I.G., Gear, C.W., Hyman, J.M., Kevrekidis, P.G., Runborg, O., Theodoropoulos, C.: Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Comm. Math. Sci. 1, 715–762 (2003)

    MATH  MathSciNet  Google Scholar 

  20. LeVeque, R.J.: Numerical Methods for Conservation Laws. Birkhäuser-Verlag, Boston (1990)

    MATH  Google Scholar 

  21. LeVeque, R.J., Yee, H.C.: A study of numerical methods for hyperbolic conservation laws with stiff source terms. J. Comput. Phys. 86, 187–210 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lions, P.L., Papanicolaou, G., Varadhan, S.R.S.: Homogenization of Hamilton-Jacobi equations. unpublished.

    Google Scholar 

  23. Majda, A.: A qualitative model for dynamic combustion. SIAM J. Appl. Math. 41, 70–93 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  24. Oran, E.S., Boris, J.P.: Numerical Simulation of Reactive Flow. Elsevier, New York (1987)

    MATH  Google Scholar 

  25. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  26. Ren, W.: Seamless multiscale modeling of complex fluids using fiber bundle dynamics. Comm. Math. Sci. 5, 1027–1037 (2007)

    MATH  Google Scholar 

  27. Ren, W., E, W.: Heterogeneous multiscale method for the modeling of complex fluids and microfluidics. J. Comput. Phys. 204, 1–26 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sun, Y., Engquist, B.: Heterogeneous multiscale methods for interface tracking of combustion fronts. SIAM Multiscale Model. Simul. 5, 532–563 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tornberg, A.-K., Engquist, B.: The segment projection method for interface tracking. Comm. Pure Appl. Math. 56, 47–79 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  31. Vanden-Eijnden, E.: Numerical techniques for multiscale dynamical systems with stochastic effects. Comm. Math. Sci. 1, 385–391 (2003)

    MATH  MathSciNet  Google Scholar 

  32. Vanden-Eijnden, E.: On HMM-like integrators and projective integration methods for systems with multiple time scales. Comm. Math. Sci. 5, 495–505 (2007)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Weinan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Weinan, E., Engquist, B., Sun, Y. (2011). The Heterogeneous Multiscale Methods with Application to Combustion. In: Echekki, T., Mastorakos, E. (eds) Turbulent Combustion Modeling. Fluid Mechanics and Its Applications, vol 95. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0412-1_18

Download citation

Publish with us

Policies and ethics