Skip to main content

Adaptive Methods for Simulation of Turbulent Combustion

  • Chapter
Turbulent Combustion Modeling

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 95))

Abstract

Adaptive mesh refinement (AMR) is an effective approach for simulating fluid flow systems that exhibit a large range of numerical resolution requirements. For example, an AMR simulation could dynamically focus maximum numerical resolution near a propagating flame structure, while simultaneously placing coarser computational zones near relatively large flow structures in the exhaust region downstream of the flame. However, since turbulent reacting flow applications already tend to be significantly complex, an AMR implementation might quickly become prohibitively intricate. In this chapter, we discuss basic AMR algorithm design principles that can be applied in a straightforward way to build up extremely efficient multi-stage solution strategies. As an example, we discuss an adaptive projection scheme for low Mach number flows, which was used to analyze flame-turbulence interactions in a full-scale simulation of a turbulent premixed burner experiment using detailed chemistry and transport models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almgren, A.S., Bell, J.B., Colella, P., Howell, L.H., Welcome, M.L.: A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations. J. Comput. Phys. 142, 1–46 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Almgren, A.S., Bell, J.B., Crutchfield, W.Y.: Approximate projection methods: Part I. inviscid analysis. SIAM J. Sci. Comput. 22, 1139–1159 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Almgren, A.S., Bell, J.B., Szymczak, W.G.: A numerical method for the incompressible Navier-Stokes equations based on an approximate projection. SIAM J. Sci. Comput. 17, 358–369 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ascher, U., Petzold, L.R.: Projected implicit Runge Kutta methods for differential algebraic systems. SIAM J. Num. Anal. 28, 1097–1120 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bell, J., Berger, M., Saltzman, J., Welcome, M.: A three-dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM Journal on Scientific and Statistical Computing 15, 127–138 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bell, J., Day, M., Kuhl, A.L.: Numerical simulations of shock-induced mixing and combustion. In: 19th ICDERS. Hakone, Japan (July 27 – August 1, 2003)

    Google Scholar 

  7. Bell, J.B., Cheng, R.K., Day, M.S., Shepherd, I.G.: Numerical simulation of Lewis number effects on lean premixed turbulent flames. Proc. Combust. Inst. 31, 1309–1317 (2007)

    Article  Google Scholar 

  8. Bell, J.B., Colella, P., Glaz, H.M.: A second-order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys. 85, 257–283 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bell, J.B., Day, M.S., Rendleman, C.A., Woosley, S.E., Zingale, M.A.: Adaptive low Mach number simulations of nuclear flame microphysics. J. Comput. Phys. 195, 677–694 (2004)

    Article  MATH  Google Scholar 

  10. Bell, J.B., Marcus, D.L.: A second-order projection method for variable density flows. J. Comput. Phys. 101, 334–348 (1992)

    Article  MATH  Google Scholar 

  11. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989)

    Article  MATH  Google Scholar 

  12. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value problems in Differential-Algrebraic Equations. SIAM, Philadelphia, PA (1996)

    Google Scholar 

  14. Chan, C.K., Lau, K.S., Chin, W.K., Cheng, R.K.: Freely propagating open premixed turbulent flames stabilized by swirl. Proc. Combust. Inst. 24, 511–518 (1992)

    Google Scholar 

  15. Cheng, R.K.: Velocity and scalar characteristics of premixed turbulent flames stabilized by weak swirl. Combust. Flame 101, 1–14 (1991)

    Article  Google Scholar 

  16. Cheng, R.K., Littlejohn, D., Strakey, P.A., Sidwell, T.: Laboratory investigations of a low-swirl injector with h2 and ch4 at gas turbine conditions. Proc. Combust. Inst. 32, 21–46 (2009)

    Google Scholar 

  17. Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comp. 22, 745–762 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  18. Crutchfield, W.Y.: Load balancing irregular algorithms. Tech. Rep. UCRL-JC-107679, Lawrence Livermore National Laboratory (1991)

    Google Scholar 

  19. Day, M.S., Bell, J.B.: Numerical simulation of laminar reacting flows with complex chemistry. Combust. Theory Model. 4, 535–556 (2000)

    Article  MATH  Google Scholar 

  20. Day, M.S., Bell, J.B., Bremer, P.T., Pascucci, V., Beckner, V.E.: Turbulence effects on cellular burning structures in lean premixed hydrogen flames. Combust. Flame 156, 1035–1045 (2009)

    Article  Google Scholar 

  21. Ern, A., Giovangigli, V.: Multicomponent Transport Algorithms, Lecture Notes in Physics 24, Springer-Verlag, Berlin (1994)

    MATH  Google Scholar 

  22. Ern, A., Giovangigli, V.: EGLIB: A General-Purpose Fortran Library for Multicomponent Transport Property Evaluations. J. Comput. Phys. 120, 105–116 (2005)

    Article  MathSciNet  Google Scholar 

  23. Frenklach, M., Wang, H., Goldenberg, M., Smith, G.P., Golden, D.M., Bowman, C.T., Hanson, R.K., Gardiner, W.C., Lissianski, V.: GRI-Mech—an optimized detailed chemical reaction mechanism for methane combustion. Tech. Rep. GRI-95/0058, Gas Research Institute (1995). http://www.me.berkeley.edu/gri_mech/

  24. Majda, A., Sethian, J.A.: The derivation and numerical solution of the equations for zero Mach number combustion. Combust. Sci. Technol. 42, 185–205 (1985)

    Article  Google Scholar 

  25. Mansour, M., Chen, Y.C.: Experimental Thermal Fluid Sci. 32, 1390–1395 (2008)

    Article  Google Scholar 

  26. McMurtry, P., Jou, W.H., Riley, J., Metcalfe, R.: Direct numerical simulations or a reacting mixing layer with chemical heat release. AIAA J. 24, 962–970 (1986)

    Article  Google Scholar 

  27. Najm, H.N., Knio, O.M., Paul, P.H., Wyckoff, P.S.: A study of flame observables in premixed methane-air flames. Combust. Sci. Technol. 140, 369–403 (1998)

    Article  Google Scholar 

  28. Najm, H.N., Wyckoff, P.S.: Premixed flame response to unsteady strain rate and curvature. Combust. Flame 110, 92–112 (1997)

    Article  Google Scholar 

  29. Najm, H.N., Wyckoff, P.S., Knio, O.M.: A semi-implicit numerical scheme for reacting flow. I. Stiff chemistry. J. Comput. Phys. 143, 381–402 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  30. Nogenmyr, K., Peterson, P., Bai, X.S., Nauert, A., Olofsson, J., Brackman, C., Seyfried, H., Zetterberg, J., Li, Z.S., Richter, M., Dreizler, A., Linne, M., Alden, M.: Large eddy simulation and experiments of stratified lean premixed methane/air turbulent flames. Proc. Combust. Inst. 31, 1467–1475 (2007)

    Article  Google Scholar 

  31. Pember, R.B., Howell, L.H., Bell, J.B., Colella, P., Crutchfield, W.Y., Fiveland, W.A., Jessee, J.P.: An adaptive projection method for unsteady, low-Mach number combustion. Combust. Sci. Technol. 140, 123–168 (1998)

    Article  Google Scholar 

  32. Peterson, P., Olofsson, J., Brackman, C., Seyfried, H., Zetterberg, J., Richter, M., Alden, M., Linne, M., Cheng, R., Nauert, A., Geyer, D., Dreizler, A.: Simultaneous PIV/OH PLIF, Rayleigh thermometry/OH PLIF and stereo PIV measurements in a low-swirl flame. Appl. Opt 46, 3928–3936 (2007)

    Article  Google Scholar 

  33. Qian, J., Tryggvason, G., Law, C.K.: Front tracking method for the motion of premixed flames. J. Comput. Phys. 144, 52–69 (1988)

    Article  Google Scholar 

  34. Rehm, R.G., Baum, H.R.: The equations of motion for thermally driven buoyant flows. N. B. S. J. Res. 83, 297–308 (1978)

    MATH  Google Scholar 

  35. Rendleman, C.A., Beckner, V.E., Lijewski, M., Crutchfield, W.Y., Bell, J.B.: Parallelization of structured, hierarchical adaptive mesh refinement algorithms. Comput. Vis. Sci. 3, 147–157 (2000)

    Article  MATH  Google Scholar 

  36. Rutland, C., Ferziger, J.: Simulations of flame-vortex interactions. Combust. Flame 84, 343–360 (1991)

    Article  Google Scholar 

  37. Zhang, S., Rutland, C.J.: Premixed flame effects on turbulence and pressure-related terms. Combust. Flame 102, 447–461 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Bell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bell, J., Day, M. (2011). Adaptive Methods for Simulation of Turbulent Combustion. In: Echekki, T., Mastorakos, E. (eds) Turbulent Combustion Modeling. Fluid Mechanics and Its Applications, vol 95. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0412-1_13

Download citation

Publish with us

Policies and ethics