Skip to main content

The One-Dimensional-Turbulence Model

  • Chapter
Turbulent Combustion Modeling

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 95))

Abstract

The one-dimensional turbulence (ODT) model represents an efficient and novel multiscale approach to couple the processes of reaction, diffusion and turbulent transport. The principal ingredients of the model include a coupled deterministic solution for reaction and molecular transport and a stochastic prescription for turbulent transport. The model may be implemented as stand-alone for simple turbulent flows and admits various forms for the description of spatially developing and temporally developing flows. It also may be implemented within the context of a coupled multiscale solution using the ODTLES approach. This chapter outlines the model formulation, and applications of ODT using stand-alone solutions and ODTLES.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashurst, W.T., Kerstein, A.R.: One-dimensional turbulence: Variable-density formulation and application to mixing layers. Phys. Fluids 17, 025107 (2005)

    Article  MathSciNet  Google Scholar 

  2. Balasubramanian, S.: A novel approach for the direct simulation of subgrid-scale physics in fire simulations. Master’s Thesis, Department of Mechanical and Aerospace Engineering, North Carolina State University (2010)

    Google Scholar 

  3. Cao, S., Echekki, T.: A low-dimensional stochatic closure model for combustion large-eddy simulation. J. Turbul. 9, 1–35 (2008).

    MathSciNet  Google Scholar 

  4. DesJardin, P.E., O’Hern, T.J., Tieszen, S.R.: Large eddy simulations and experimental measurements of the near field of a large helium-air plume. Phys. Fluids 16, 1866–1883 (2004)

    Article  Google Scholar 

  5. Dreeben, T.D., Kerstein, A.R.: Simulation of vertical slot convection using one-dimensional turbulence. Int. J. Heat Mass Transf. 43, 3823–3834 (2000)

    Article  MATH  Google Scholar 

  6. Echekki, T., Gupta, K.: Hydrogen autoignition in a turbulent jet with preheated co-flow air. Int. J. Hydrogen Energy 34, 8352–8377 (2009)

    Article  Google Scholar 

  7. Echekki, T., Kerstein, A.R., Chen, J.-Y., Dreeben, T.D.: One-dimensional turbulence simulation of turbulent jet diffusion flames. Combust. Flame 125, 1083–1105 (2001)

    Article  Google Scholar 

  8. Echekki, T., Park, J.: The LES-ODT model for turbulent premixed flames, AIAA-2010-0207, The 48th AIAA Aerospace Sciences Meeting, Orlando, FL, January 4–7 (2010)

    Google Scholar 

  9. http://groups.google.com/group/odt-research

  10. Hawkes, E.R., Sankaran, R., Sutherland, J.C., Chen, J.H.: Scalar mixing in direct numerical simulations of temporally-evolving plane jet flames with detailed CO/H2 kinetics. Proc. Combust. Inst. 31, 1633–1640 (2007)

    Article  Google Scholar 

  11. Hewson, J.C., Kerstein, A.R.: Stochastic simulation of transport and chemical kinetics in turbulent CO/H2/N2 flames. Combust. Theory Model. 5, 559–697 (2001)

    Article  Google Scholar 

  12. Hewson, J.C., Kerstein, A.R.: Local extinction and reignition in nonpremixed turbulent CO/H2/N2 jet flames. Combust. Sci. Technol. 174, 35–66 (2002)

    Article  Google Scholar 

  13. Kerstein, A.R.: Linear eddy modeling of turbulent transport. 2. Application to shear layer mixing. Combust. Flame 75, 397–413 (1989)

    Article  Google Scholar 

  14. Kerstein, A.R.: Linear-eddy modeling of turbulent transport. 3. Mixing and differential molecular-diffusion in round jets. J. Fluid Mech. 216, 411–435 (1990)

    Article  MATH  Google Scholar 

  15. Kerstein, A.R.: One-dimensional turbulence: Model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows. J. Fluid Mech. 392, 277–334 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kerstein, A.R.: One-dimensional turbulence. Part 2. Staircases in double-diffusive convection. Dyn. Atmos. Oceans 30, 25–46 (1999)

    Article  Google Scholar 

  17. Kerstein, A.R.: Lect. Notes Phys. 756, 291–333 (2009)

    Google Scholar 

  18. Kerstein, A.R.: One-dimensional turbulence: A new approach to high-fidelity subgrid closure of turbulent flow simulations. Computer Phys. Commun. 148, 1–16 (2002)

    Article  MATH  Google Scholar 

  19. Kerstein, A.R., Ashurst, Wm.T., Wunsch, S., Nilsen, V.: One-dimensional turbulence: Vector formulation and application to free shear flows. J. Fluid Mech. 447, 85–109 (2001)

    MATH  Google Scholar 

  20. Kerstein, A.R., Wunsch, S.: Simulation of a stably stratified atmospheric boundary layer using one-dimensional turbulence. Bound. Layer Meteorol. 118, 325–356 (2006)

    Article  Google Scholar 

  21. Krishnamoorthy, N.: Reaction models and reaction state parameterization for turbulent non-premixed combustion. Ph.D. Thesis, University of Utah, Salt Lake City (2008)

    Google Scholar 

  22. Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, 3rd Ed. (McGraw-Hill, New York 2000)

    Google Scholar 

  23. McDermott, R.J.: Toward one-dimensional turbulence subgrid closure for large-eddy simulation. Ph.D. Thesis, University of Utah, Salt Lake City (2005)

    Google Scholar 

  24. McDermott, R.J., Kerstein, A.R., Schmidt, R.C., Smith, P.J.: The ensemble mean limit of the one-dimensional turbulence model and application to finite-volume large-eddy simulation. J. Turbul. 6, 1–33 (2005)

    Article  MathSciNet  Google Scholar 

  25. Peters, N., Turbulent Combustion (Cambridge Univ. Press, Cambridge 2000)

    Book  MATH  Google Scholar 

  26. Punati, N., Sutherland, J.C.: Application of an Eulerian one dimensional turbulence model to simulation of turbulent jets, U.S. Joint Sections of the Combustion Institute, Ann Arbor, MI, May (2009)

    Google Scholar 

  27. Punati, N., Sutherland, J.C., Kerstein, A.R., Hawkes, E.R., Chen, J.H.: An evaluation of the one-dimensional turbulence model: Comparison with direct numerical simulations of CO/H2 jets with extinction and reignition. Proc. Combust. Instit., to appear (2011)

    Google Scholar 

  28. Ranganath, B., Echekki, T.: One-dimensional turbulence-based closure for turbulent non-premixed flames. Prog. Comput. Fluid Dyn. 6, 409–418 (2006)

    Article  MATH  Google Scholar 

  29. Ranganath, B., Echekki, T.: One-dimensional turbulence-based closure with extinction and reignition. Combust. Flame 154, 23–46 (2008)

    Article  Google Scholar 

  30. Ranganath, B., Echekki, T.: ODT closure with extinction and reignition in piloted methane-air jet diffusion flame. Combust. Sci. Technol. 181, 570–596 (2009)

    Article  Google Scholar 

  31. Ricks, A.J., Hewson, J.C., Kerstein, A.R., Gore, J.P., Tieszen, S.R., Ashurst, Wm.T.: A spatially-developing one-dimensional turbulence (ODT) study of soot and enthalpy evolution in meter-scale buoyant turbulent flames. Combust. Sci. Technol. 182, 60–101 (2010)

    Article  Google Scholar 

  32. Schmidt, R.C., Kerstein, A.R., McDermott, R.: ODTLES: A multi-scale model for 3D turbulent flow based on one-dimensional turbulence modeling. Comput. Methods. Appl. Mech. Engg. 199, 865–880 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Schmidt, R.C., Kerstein, A.R., Wunsch, S., Nilsen, V.: Near-wall LES closure based on one-dimensional turbulence modeling. J. Comput. Phys. 186, 317–355 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Schmidt, J.R., Wendt, J.O.L., Kerstein, A.R.: Non-equilibrium wall deposition of inertial particles in turbulent flow. J. Stat. Phys. 137, 233–257 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Shihn, H., DesJardin, P.E.: Simulation of vertical wall fires with one-dimensional turbulence modeling. Spring Technical Meeting, The Combustion Institute/Canadian Section, Ontario, Canada, May 9–12 (2004)

    Google Scholar 

  36. Shihn, H., Desjardin, P.E.: Near-wall modeling of an isothermal vertical wall using one-dimensional turbulence. Int. J. Heat Mass Transf. 50, 1314–1327 (2007).

    Article  MATH  Google Scholar 

  37. Sutherland, J.C., Punati, N., Kerstein, A.R.: A unified approach to the various formulations of the one-dimensional turbulence model. Technical Report ICSE100101, The University of Utah Institute for Clean and Secure Energy, Salt Lake City, UT, 2010. Available from (accessed June 2010): http://repository.icse.utah.edu/dspace/handle/123456789/9861

  38. Wunsch, S.: Stochastic simulations of buoyancy-reversal experiments. Phys. Fluids 15, 1442–1456 (2003)

    Article  Google Scholar 

  39. Wunsch, S., Kerstein, A.R.: A model for layer formation in stably-stratified turbulence. Phys. Fluids 13, 702–712 (2001)

    Article  Google Scholar 

  40. Wunsch, S., Kerstein, A.R.: A stochastic model for high Rayleigh-number convection. J. Fluid Mech. 528, 173–205 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Echekki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Echekki, T., Kerstein, A.R., Sutherland, J.C. (2011). The One-Dimensional-Turbulence Model. In: Echekki, T., Mastorakos, E. (eds) Turbulent Combustion Modeling. Fluid Mechanics and Its Applications, vol 95. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0412-1_11

Download citation

Publish with us

Policies and ethics