Skip to main content

Phosphatic Microbialites in the Triassic Phosphogenic Facies of Svalbard

  • Chapter
  • First Online:

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 18))

Abstract

The Triassic organic carbon-rich, phosphogenic facies setting in Svalbard, NW Barents Sea Shelf provides an insight into ancient shelf depositional system that shows similarities to modern phosphogenic shelves reinforced by coastal upwellings. Enhanced deposition and diagenesis of marine organic matter on the Svalbard shelf promoted phosphogenesis in bottom sediments that resulted in the formation of various nodular and peloidal phosphate deposits as well as peculiar phosphatic accumulations related to benthic activity of microbial mats. The phosphatic microbialites are interpreted to have been dominated by mats of colorless filamentous sulfur bacteria, which proliferated on elevated sediment bodies and submarine slopes under conditions of highly reduced or halted sedimentation. They provided local depositional systems capable of precipitating and significantly concentrating carbonate fluorapatite (CFA) in the sediment due to sealing of the sediment surface to phosphate diffusion, narrowing chemical gradients essential for the phosphorus pumps, reactive phosphate buildup, and the mineral precipitation. The precipitation of apatite was a very early pheno­menon that resulted in the formation of phosphatic matrix or cement filling the original pore space of biolaminated sediment sequences. The matrix formation was a complex process, involving pulses of apatite precipitation associated with fossilization of microbial communities, oxidation of organic matter, enrichment with rare earth elements, and pyritization of the phosphatic fabric. The formation of phosphatic matrix was limited to a narrow submat zone, which coincided with the upper limit of the sulfate reduction zone in organic-rich sediment. The horizons with well-defined phosphatic microbialites show high concentrations of CFA (up to 32 wt% P2O5), though their contribution to the phosphorus pool of the phosphogenic facies is subordinate. Nodular and peloidal accumulations dominate the phosphorite fraction of the Triassic sequence, but these phosphates usually give lower burial phosphorus concentrations in the sediment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

 References

  • Altschuler, Z.S. (1980) The geochemistry of trace metals in marine phosphorites. Part I. Characteristic abundances and enrichment, In: Y.K. Bentor (ed.) Marine Phosphorites. Geochemistry, Occurrence, Genesis. SEPM Special Publication No. 29, pp. 19–30.

    Google Scholar 

  • Arning, E.T., Birgel, D., Brunner, B. and Peckmann, J. (2009a) Bacterial formation of phosphatic laminites off Peru. Geobiology 7: 295–307.

    PubMed  CAS  Google Scholar 

  • Arning, E.T., Lückge, A., Breuer, C., Gussone, N., Birgel, D. and Peckmann, J. (2009b) Genesis of phosphorite crusts off Peru. Mar. Geol. 262: 68–81.

    CAS  Google Scholar 

  • Baturin, G.N. (1978) Phosphorites in the Ocean. Smirnov Institute of Oceanology. SSSR Academy of Sciences, Izdatelstvo Nauka, Moscow, 232 pp. (in Russian).

    Google Scholar 

  • Baturin, G.N. (1982) Phosphorites on the Sea Floor. Origin, Composition and Distribution. Developments in Sedimentology 33. Elsevier, Amsterdam, 343 pp.

    Google Scholar 

  • Baturin, G.N. (1983) Some unique sedimentological and geochemical features of deposits in coastal upwelling regions, In: J. Thiede and E. Suess (eds.) Coastal Upwelling; Its Sediment Record. Part A. Plenum Press, New York, pp. 11–27.

    Google Scholar 

  • Baturin, G.N. and Bezrukov, P.L. (1979) Phosphorites on the sea floor and their origin. Mar. Geol. 31: 317–332.

    CAS  Google Scholar 

  • Benmore, R.A., Coleman, M.L. and McArthur, J.M. (1983) Origin of sedimentary francolite from its sulphur and carbon isotope composition. Nature 302: 516–518.

    CAS  Google Scholar 

  • Berner, R.A. (1970) Sedimentary pyrite formation. Am. J. Sci. 268: 1–23.

    CAS  Google Scholar 

  • Berner, R.A. (1984) Sedimentary pyrite formation: an update. Geochim. Cosmochim. Acta 48: 605–615.

    CAS  Google Scholar 

  • Berner, R.A. (1985) Sulphate reduction, organic matter decomposition and pyrite formation. Philos. Trans. R. Soc. Lond. A315: 25–38.

    Google Scholar 

  • Bliskovski, V.Z., Grinienko, V.A. Migdisov, L.L. and Savina, L.I (1977) Isotopic composition of sulfur in minerals of phosphorite ores. Geochemistry 8: 1208–1216 (in Russian).

    Google Scholar 

  • Boudreau, B.P. (1991) Modelling the sulphide-oxygen reaction and associated pH gradients in porewaters. Geochim. Cosmochim. Acta 55: 145–159.

    CAS  Google Scholar 

  • Bréhéret, J.-G. (1991) Phosphatic concretions in black facies of the Aptian-Albian Marnes bleues Formation of the Vocontian basin (SE France), and at Site DSDP 369: evidence of benthic microbial activity. Cretaceous Res. 12: 411–435.

    Google Scholar 

  • Burnett, W.C. and Riggs, S.R. (eds.) (1990) Phosphate Deposits of the Word. Vol. 3. Neogene to Modern Phosphorites. Cambridge University Press, Cambridge, 464 pp.

    Google Scholar 

  • Burnett, W.C., Veeh, H.H. and Soutar, A. (1980) U-series, oceanographic and sedimentary evidence in support of recent formation of phosphate nodules off Peru, In: Y.K. Bentor (ed.) Marine Phosphorites. Geochemistry, Occurrence, Genesis. SEPM Special Publication No. 29, pp. 61–71.

    Google Scholar 

  • Canfield, D.E. (1989) Reactive iron in marine sediments. Geochim. Cosmochim. Acta 53: 619–632.

    PubMed  CAS  Google Scholar 

  • Canfield, D.E. and Thamdrup, B. (1994) The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science 266: 1973–1975.

    PubMed  CAS  Google Scholar 

  • Chambers, L.A. and Trudinger, P.A. (1979) Microbiological fractionation of stable sulfur isotopes: a review and critique. Geomicrobiol. J. 1: 249–293.

    CAS  Google Scholar 

  • Cocks, L.R.M. and Torsvik, T.H. (2007) Siberia, the wandering northern terrane, and its changing geography through the Paleozoic. Earth-Sci. Rev. 82: 29–74.

    Google Scholar 

  • Cohen, Y. and Rosenberg, E. (eds.) (1989) Microbial Mats. Physiological Ecology of Benthic Microbial Communities. American Society for Microbiology, Washington, 494 pp.

    Google Scholar 

  • Cohen, Y., Castenholz, R.W. and Halvorsen, H.O. (eds.) (1984) Microbial Mats: Stromatolites. MBL Lectures in Biology 3, 498 pp.

    Google Scholar 

  • Compton, J.S., Hodell, D.A., Garrido, J.R. and Mallinson, D.J. (1993) Origin and age of phosphorite from the south-central Florida Platform: relation of phosphogenesis to sea-level fluctuations and δ13C excursions. Geochim. Cosmochim. Acta 57: 131–146.

    CAS  Google Scholar 

  • Dahanayake, K. and Krumbein, W.E. (1985) Ultrastructure of a microbial mat-generated phosphorite. Mineralium Deposita 20: 260–265.

    Google Scholar 

  • Dallmann, W.K. (ed.) (1999) Lithostratigraphic Lexicon of Svalbard. Upper Palaeozoic to Quaternary Bedrock. Review and Recommendations for Nomenclature Use. Norsk Polarinstitutt, Tromsø, 318 pp.

    Google Scholar 

  • Dallmann, W.K., Ohta, Y., Elvevold, S. and Blomeier, D. (eds.) (2002) Bedrock Map of Svalbard and Jan Mayen. Norsk Polarinstitutt Temakart 33.

    Google Scholar 

  • Detterman, R.L. (1989) Triassic phosphate deposits, north-eastern Alaska, USA, In: A.J.G. Notholt, R.P. Sheldon and D.F. Davidson (eds.) Phosphate Deposits of the World. Vol. 2. Phosphate Rock Resources. Cambridge University Press, Cambridge, pp. 14–17.

    Google Scholar 

  • Detterman, R.L., Reiser, H.N., Brosgé, W.P. and Dutro Jr., J.T., (1975) Post-Carboniferous stratigraphy, northern Alaska. U.S. Geological Survey Professional Paper 886, 46 pp.

    Google Scholar 

  • Dill, H. and Kemper, E. (1990) Crystallographic and chemical variations during pyritization in the upper Barremian and lower Aptian dark claystones from the Lower Saxonian Basin (NW Germany). Sedimentology 37: 427–443.

    Google Scholar 

  • Egorov, A.Yu. and Baturin, G.N. (1987) Phosphorites in Triassic deposits of the Novosibirsk Islands. Dokl. Akad. Nauk SSSR 297: 921–925 (in Russian).

    CAS  Google Scholar 

  • Elderfield, H. and Greaves, M.J. (1982) The rare-earth elements in sea-water. Nature 296: 214–219.

    CAS  Google Scholar 

  • Embry, A.F. (1988) Triassic sea-level changes: evidence from the Canadian Arctic Archipelago, In: C.K. Wilgus, B.S. Hastings, H. Posamentier, J. Van Wagoner, C.A. Ross and C.G.St.C. Kendall (eds.) Sea-Level Changes: An Integrated Approach. SEPM Special Publication No. 42, 249–259.

    Google Scholar 

  • Fanlo, I. and Ayora, C. (1998) The evolution of the Lorraine evaporite basin: implications for the chemical and isotope composition of the Triassic ocean. Chem. Geol. 146: 135–154.

    CAS  Google Scholar 

  • Fenchel, T. and Bernard, C. (1995) Mats of colourless sulphur bacteria. 1. Major microbial processes. Mar. Ecol. Prog. Ser. 128: 161–170.

    Google Scholar 

  • Ferdelman, T.G., Lee, C., Pantija, S., Harder, J., Bebout, B.M. and Fossig, H. (1997) Sulfate reduction and methanogenesis in a Thioploca-dominated sediment off the coast of Chile. Geochim. Cosmochim. Acta 61: 3065–3079.

    CAS  Google Scholar 

  • Föllmi, K.B. (1996) The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth Sci. Rev. 40: 55–124.

    Google Scholar 

  • Froelich, P.N., Arthur, M.A., Burnett, W.C., Deakin, M., Hensley, V., Jahnke, R., Kaul, L., Kim, K.-H., Roe, K., Soutar, A. and Vathakanon, C. (1988) Early diagenesis of organic matter in Peru continental margin sediments: phosphorite precipitation, In: W.C. Burnett and P.N. Froelich (eds.) The Origin of Marine Phosphorite. The Results of the R.V. Robert D. Conrad Cruise 23-06 to the Peru Shelf. Mar. Geol. 80: pp. 309–343.

    Google Scholar 

  • Gächter, R. and Meyer, J.S. (1993) The role of microorganisms in mobilization and fixation of phosphorus in sediments. Hydrobiologia 253: 103–121.

    Google Scholar 

  • Gächter, R., Meyer, J.S. and Mares, A. (1988) Contribution of bacteria to release and fixation of phosphorus in lake sediments. Limnol. Oceanogr. 33: 1542–1558.

    Google Scholar 

  • Gallardo, V.A. (1977) Large benthic microbial communities in sulphide biota under Peru-Chile Subsurface Countercurrent. Nature 268: 331–332.

    Google Scholar 

  • Garrison, R.E. and Kastner, M. (1990) Phosphatic sediments and rocks recovered from the Peru margin during ODP Leg 112. Proc. Ocean Drill Prog. Sci. Results 112: 111–134.

    Google Scholar 

  • Glenn, C.R. and Arthur, M.A. (1988) Petrology and major element geochemistry of Peru margin phosphorites and associated diagenetic minerals: authigenesis in modern organic-rich sediments, In: W.C. Burnett and P.N. Froelich (eds.) The Origin of Marine Phosphorite. The Results of the R.V. Robert D. Conrad Cruise 23-06 to the Peru Shelf. Mar. Geol. 80: pp. 231–267.

    Google Scholar 

  • Glenn, C.R., Föllmi, K.F., Riggs, S.R., Baturin, G.N., Grimm, K.A., Trappe, J., Abed, A.M., Galli-Olivier, C., Garrison, R.E., Ilyin, A.V., Jehl, C., Rohrlich, V., Sadaqah, R.M.Y., Schidlowski, M., Sheldon, R.E. and Siegmund, H. (1994) Phosphorus and phosphorites: sedimentology and environmental concerns. Eclogae Geol. Helv. 87: 747–788.

    Google Scholar 

  • Gradjean, P. and Albarède, F. (1989) Ion probe measurement of rare earth element in biogenic apatites. Geochim. Cosmochim. Acta 53: 3179–3183.

    Google Scholar 

  • Gulbrandsen, R.A. (1970) Relation of carbon dioxide content of apatite of the Phosphoria Formation to regional facies. U.S. Geol. Surv. Prof. Pap. 700B, B9–B13.

    Google Scholar 

  • Gunnars, A. and Blomqvist, S. (1997) Phosphate exchange across the sediment-water interface when shifting from anoxic to oxic conditions – an experimental comparison of freshwater and brackish-marine systems. Biogeochemistry 37: 203–226.

    CAS  Google Scholar 

  • Habicht, K.S. and Canfield, D.E. (1997) Sulphur isotope fractionation during bacterial sulphate reduction in organic-rich sediments. Geochim. Cosmochim. Acta 61: 5351–5361.

    PubMed  CAS  Google Scholar 

  • Habicht, K.S., Canfield, D.E. and Rethmeier, J. (1998) Sulphur isotopic fractionation during bacterial reduction and disproportionation of thiosulphate and sulphite. Geochim. Cosmochim. Acta 62: 2585–2595.

    CAS  Google Scholar 

  • Hagen, K.D. and Nelson, D.C. (1997) Use of reduced sulfur compounds by Beggiatoa spp.: enzymology and physiology of marine and freshwater strains in homogeneous and gradient cultures. Appl. Environ. Microbiol. 63: 3957–3964.

    PubMed  CAS  Google Scholar 

  • Harland, W.B. (1997) The Geology of Svalbard. Geological Society London Memoir No. 17, 521 pp.

    Google Scholar 

  • Heijs, S.K., Jonkers, H.M., van Gemerden, H., Schaub, B.E.M. and Stal, L.J. (1999) The buffering capacity towards free sulphide in sediments of a coastal lagoon (Bassin d’Arcachon, France) – the relative importance of chemical and biological processes. Estuar. Coast Shelf Sci. 49: 21–35.

    CAS  Google Scholar 

  • Henrichs, S.M. and Farrington, J.W. (1984) Peru upwelling region sediments near 15°S. 1. Remineralization and accumulation of organic matter. Limnol. Oceanogr. 29: 1–19.

    CAS  Google Scholar 

  • Huettel, M., Forster, S., Kloser, S. and Fossing, H. (1996) Vertical migration in the sediment-dwelling sulfur bacteria Thioploca spp. in overcoming diffusion limitations. Appl. Environ. Microbiol. 62: 1863–1872.

    PubMed  CAS  Google Scholar 

  • Ingall, E.D., Bustin, R.M. and Van Cappellen, P. (1993) Influence of water column anoxia on the burial and preservation of carbon and phosphorus in marine shales. Geochim. Cosmochim. Acta 57: 303–316.

    CAS  Google Scholar 

  • Jahnke, R.A., Emerson, S.R., Roe, K.K. and Burnett, W.C. (1983) The present-day formation of apatite in Mexican continental-margin sediments. Geochim. Cosmochim. Acta 47: 259–266.

    CAS  Google Scholar 

  • Jarvis, I. (1992) Sedimentology, geochemistry and origin of phosphatic chalks, the Upper Cretaceous deposits of NW Europe. Sedimentology 39: 55–97.

    CAS  Google Scholar 

  • Jarvis, I., Burnett, W.C., Nathan, Y., Almbaydin, F.S.M., Attia, A.K.M., Castro, L.N., Flicoteaux, R., Hilmy, M.E., Husain, V., Qutawnah, A.A., Serjani, A. and Zanin, Y.N. (1994) Phosphorite geochemistry: state-of-the art and environmental concerns. Eclogae Geol. Helv. 87: 643–700.

    Google Scholar 

  • Jørgensen, B.B. (1982) Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. Philos. Trans. R. Soc. Lond. B298: 543–561.

    Google Scholar 

  • Jørgensen, B.B. and Gallardo, V.A. (1999) Thioploca spp.: filamentous sulfur bacteria with nitrate vacuoles. FEMS Microbiol. Ecol. 28: 301–313.

    Google Scholar 

  • Jørgensen, B.B. and Revsbech, N.P. (1983) Colorless sulfur bacteria, Beggiatoa spp., and Thiovulum spp., in O2 and H2S microgradients. Appl. Environ. Microbiol. 45: 1261–1270.

    PubMed  Google Scholar 

  • Kidder, D.L. and Eddy-Dilek, C.A. (1994) Rare-earth element variation in phosphate nodules from mid-continent Pennsylvanian cyclothems. J. Sediment. Res. A64: 584–592.

    CAS  Google Scholar 

  • Kolodny, Y. and Luz, B. (1992) Isotope signatures in phosphate deposits: formation and diagenetic history, In: N. Clauer and S. Chaudhuri (eds.) Isotopic Signatures and Sedimentary Records. Springer-Verlag, Berlin, pp. 69–121.

    Google Scholar 

  • Krajewski, K.P. (2000a) Phosphogenic facies and processes in the Triassic of Svalbard. Stud. Geol. Pol. 116: 7–84.

    Google Scholar 

  • Krajewski, K.P. (2000b) Isotopic composition of apatite-bound sulphur in the Triassic phosphogenic facies of Svalbard. Stud. Geol. Pol. 116: 85–109.

    Google Scholar 

  • Krajewski, K.P. (2000c) Diagenetic recrystallization and neoformation of apatite in the Triassic phosphogenic facies of Svalbard. Stud. Geol. Pol. 116: 111–137.

    Google Scholar 

  • Krajewski, K.P. (2000d) Phosphorus concentration and organic carbon preservation in the Blanknuten Member (Botneheia Formation, Middle Triassic) in Sassenfjorden, Spitsbergen. Stud. Geol. Pol. 116: 139–173.

    Google Scholar 

  • Krajewski, K.P. (2000e) Phosphorus and organic carbon reservoirs in the Bravaisberget Formation (Middle Triassic) in Hornsund, Spitsbergen. Stud. Geol. Pol. 116: 175–209.

    Google Scholar 

  • Krajewski, K.P. (2005) The Arctic phosphogenic province. Polish Academy of Sciences, Annual Report 2005, pp. 83–85.

    Google Scholar 

  • Krajewski, K.P. (2006) Phosphogenic facies in the Triassic of Svalbard. Abstr. Proc. Geol. Soc. Norway 3: 89–90.

    Google Scholar 

  • Krajewski, K.P. (2008) The Botneheia Formation (Middle Triassic) in Edgeøya and Barentsøya, Svalbard: lithostratigraphy, facies, phosphogenesis, paleoenvironment. Pol. Polar Res. 29: 319–364.

    Google Scholar 

  • Krajewski, K.P., Van Cappelen, P., Trichet, J., Kuhn, O., Lucas, J., Martín-Algarra, A., Prévôt, L., Tewari, V.C., Gaspar, L., Knight, R.I. and Lamboy, M. (1994) Biological processes and apatite formation in sedimentary environments. Eclogae Geol. Helv. 87: 701–745.

    Google Scholar 

  • Krajewski, K.P., Leśniak, P.M., Łącka, B. and Zawidzki, P. (2000) Origin of phosphatic stromatolites in the Upper Cretaceous condensed sequence of the Polish Jura Chain. Sediment. Geol. 136: 89–112.

    CAS  Google Scholar 

  • Krajewski, K.P., Karcz, P., Woźny, E. and Mørk, A. (2007) Type section of the Bravaisberget Formation (Middle Triassic) at Bravaisberget, western Nathorst Land, Spitsbergen, Svalbard. Pol. Polar Res. 28: 79–122.

    Google Scholar 

  • Krumbein, W.E. (1983) Stromatolites – the challenge of a term in space and time. Precambrian Res. 20: 493–531.

    Google Scholar 

  • Logan, G.A., Calver, C.R., Gorjan, P., Summons, R.E., Hayes, J.M. and Walter, M.R. (1999) Terminal Proterozoic mid-shelf benthic microbial mats in the Central Superbasin and their environmental significance. Geochim. Cosmochim. Acta 63: 1345–1358.

    PubMed  CAS  Google Scholar 

  • Lucas, J. and Prévôt, L. (1985) The synthesis of apatite by bacteria activity: mechanism, In: J. Lucas and L. Prévôt (eds.) Phosphorites. Mémoire Sciences Géologiques, Strasbourg 77: 83–92.

    Google Scholar 

  • Maher, H.D., Craddock, H.D. and Maher, K.A. (1986) Kinematics of Tertiary structures in Upper Paleozoic and Mesozoic strata on Midterhuken, West Spitsbergen. Geol. Soc. Am. Bull. 97: 1411–1421.

    Google Scholar 

  • Martín-Algarra, A. and Sánchez-Navas, A. (1995) Phosphate stromatolites from condensed cephalopod limestones, Upper Jurassic, Southern Spain. Sedimentology 42: 893–919.

    Google Scholar 

  • McArthur, J.M. and Walsh, J.N. (1984) Rare-earth geochemistry of phosphorites. Chem. Geol. 47: 191–220.

    CAS  Google Scholar 

  • McArthur, J.M., Benmore, R.A., Coleman, M.L., Soldi, C., Yeh, H.-W. and O’Brien, G.W. (1986) Stable isotopic characterization of francolite formation. Earth Planet. Sci. Lett. 77: 20–34.

    CAS  Google Scholar 

  • McLennan, S.M. (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. In. B.R. Lipin and G.A. McKay (eds.) Geochemistry and Mineralogy of Rare Earth Elements. Review in Mineralogy 18, pp. 169–200.

    Google Scholar 

  • McManus, J., Berelson, W.M., Coale, K.H., Johnson, K.S. and Kilgore, T.E. (1997) Phosphorus regeneration in continental margin sediments. Geochim. Cosmochim. Acta 61: 2891–2907.

    CAS  Google Scholar 

  • Mertz Jr., K.A. (1989) Origin of hemipelagic source rocks during Early and Middle Miocene, Monterey Formation, Salinas Basin, California. Am. Assoc. Pet. Geol. Bull. 73: 510–524.

    CAS  Google Scholar 

  • Mitrov, Yu.V., Zanin, Yu.N., Krasilnikova, N.A., Gurevich, B.G., Krivoputskaya, L.M., Krasilnikova, I.G. and Sukhov, Yu.K.M. (1987) Ultrastructures of Phosphorites (Atlas of Pictures). Izdatelstvo Nauka, Moscow, 233 pp. (in Russian).

    Google Scholar 

  • Morita, R.Y., Hurriaga, R. and Gallardo, V.A. (1981) Thioploca: methylotroph and significance in the food chain. Kieler Meeresforschung 5: 384–389.

    CAS  Google Scholar 

  • Mørk, A. (2006) Trace fossils of the Middle Triassic regressive systems tract of Svalbard. Abstr. Proc. Geol. Soc. Norway 3: 111–115.

    Google Scholar 

  • Mørk, A. and Bjorøy, M. (1984) Mesozoic source rocks in Svalbard, In: A.M Spencer et al. (eds.) Petroleum Geology of the North European Margin. Norwegian Petroleum Society, Graham and Trotman, London, pp. 371–382.

    Google Scholar 

  • Mørk, A. and Bromley, R.G. (2008) Ichnology of a marine regressive system tract: the Middle Triassic of Svalbard. Polar Res. 27: 339–359.

    Google Scholar 

  • Mørk, A., Embry, A.F. and Weitschat, W. (1989) Triassic transgressive-regressive cycles in the Sverdrup Basin, Svalbard, and the Barents Shelf, In: J.D. Collinson (ed.) Correlation in Hydrocarbon Exploration. Graham and Trotman, London, pp. 113–130.

    Google Scholar 

  • Mørk, A., Dallmann, W.K., Dypvik, H., Johannessen, E.P., Larssen, G.B., Nagy, J., Nøttvedt, A., Olaussen, S., Pčelina, T.M. and Worsley, D. (1999) Mesozoic lithostratigraphy, In: W.K. Dallmann (ed.) Lithostratigraphic Lexicon of Svalbard. Review and Recommendations for Nomenclature Use. Upper Palaeozoic to Quaternary Bedrock. Norsk Polarinstitutt, Tromsø, pp. 127–214.

    Google Scholar 

  • Nathan, Y. and Sass, E. (1981) Stability relation of apatites and calcium carbonates. Chem. Geol. 34: 103–111.

    CAS  Google Scholar 

  • Nelson, D.C. and Jannasch, H.W. (1983) Chemoautotrophic growth of marine Beggiatoa in sulphide-gradient cultures. Arch. Microbiol. 136: 262–269.

    CAS  Google Scholar 

  • Nelson, D.C., Revsbech, N.P. and Jørgensen, B.B. (1986) Microoxic-anoxic niche of Beggiatoa spp.: microelectrode survey of marine and freshwater strains. Appl. Environ. Microbiol. 52: 161–168.

    PubMed  CAS  Google Scholar 

  • Otte, S., Kuenen, J.G., Nielsen, L.P., Pearl, H.W., Zopfi, J., Schulz, H.N., Teske, A., Strotmann, B., Gallardo, V.A. and Jørgensen, B.B. (1999) Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples. Appl. Environ. Microbiol. 65: 3148–3157.

    PubMed  CAS  Google Scholar 

  • Parrish, J.T. and Curtis, R.L. (1982) Atmospheric circulation, upwelling, and organic-rich rocks in the Mesozoic and Cenozoic eras. Palaeogeogr. Palaeoclimatol. Palaeoecol. 40: 31–66.

    Google Scholar 

  • Parrish, J.T., Droser, M.L. and Bottjer, D.J. (2001) A Triassic upwelling zone: the Shublik Formation, Arctic Alaska, U.S.A. J. Sediment. Res. 71: 272–285.

    CAS  Google Scholar 

  • Piper, D.Z. and Kolodny, Y. (1987) The stable isotopic composition of a phosphorite deposit: δ13C, δ34S, and δ18O. Deep Sea Res. 34: 897–911.

    CAS  Google Scholar 

  • Piper, D.Z., Baedecker, P.A., Crock, J.G., Burnett, W.C. and Loebner, B.J. (1988) Rare earth elements in the phosphatic-enriched sediments of the Peru Shelf, In: W.C. Burnett and P.N. Froleich (eds.) The Origin of Marine Phosphorite. The Results of the R.V. Robert D. Conrad Cruise 23-06 to the Peru Shelf. Mar. Geol. 80: 269–285.

    Google Scholar 

  • Raiswell, R. (1982) Pyrite texture, isotopic composition and the availability of iron. Am. J. Sci. 282: 1244–1263.

    CAS  Google Scholar 

  • Reimers, C.E., Kastner, M. and Garrison, R.E. (1990) The role of bacterial mats in phosphate mineralization with particular reference to Monterey Formation, In: W.C. Burnett and S.R. Riggs (eds.) Phosphate Deposits of the World. Vol. 3. Neogene to Modern Phosphorites. Cambridge University Press, Cambridge, pp. 300–311.

    Google Scholar 

  • Riis, F., Lundschien, B.A., Høy, T., Mørk, A. and Mørk, M.B.E. (2008) Evolution of the Triassic shelf in the northern Barents Sea region. Polar Res. 27: 318–338.

    Google Scholar 

  • Rosenberg, R., Arnitz, W.E., De Flores, E.C., Flores, L.A., Carbajal, G., Finger, I. and Tatazona, J. (1983) Bentos biomass and oxygen deficiency in the upwelling system off Peru. J. Mar. Res. 41: 263–279.

    CAS  Google Scholar 

  • Schuffert, J.D., Kastner, M., Emanuele, G. and Jahnke, R.A. (1990) Carbonate-ion substitution in francolite: a new equation. Geochim. Cosmochim. Acta 54: 2323–2328.

    CAS  Google Scholar 

  • Schuffert, J.D., Kastner, M. and Jahnke, R.A. (1998) Carbon and phosphorus burial associated with modern phosphorite formation. Mar. Geol. 146: 21–31.

    CAS  Google Scholar 

  • Schulz, H.N. and Schulz, H.D (2005) Large sulfur bacteria and the formation of phosphorite. Science 307: 416–418.

    PubMed  CAS  Google Scholar 

  • Schulz, H.N., Jørgensen, B.B., Fossing, H.A. and Ramsing, N.B. (1996) Community structure of filamentous, sheath-building sulfur bacteria, Thioploca spp. off the coast of Chile. Appl. Environ. Microbiol. 62: 1855–1862.

    PubMed  CAS  Google Scholar 

  • Schulz, H.N., Brinkhoff, T., Ferdelman, T.G., Marine, M.H., Teske, A. and Jørgensen, B.B. (1999) Dense population of a giant sulfur bacterium in Namibian shelf sediments. Science 284: 493–495.

    PubMed  CAS  Google Scholar 

  • SenGupta, B.K., Platon, E., Bernhard, J.M. and Aharon, P. (1997) Foraminiferal colonization of hydrocarbon-seep bacterial mats and underlying sediment, Gulf of Mexico slope. J. Foraminiferal Res. 27: 292–300.

    Google Scholar 

  • Shen, Y., Zhao, R., Chu, X. and Jiajin, L. (1998) The carbon and sulfur isotope signatures in the Precambrian-Cambrian transition series of the Yangtze Platform. Precambrian Res. 89: 77–86.

    CAS  Google Scholar 

  • Soudry, D. (1987) Ultra-fine structures and genesis of the Campanian Negev high-grade phosphorites (southern Israel). Sedimentology 34: 641–660.

    Google Scholar 

  • Soudry, D. (2000) Microbial phosphate sediments, In: R.E. Riding and S.M. Awramik (eds.) Microbial Sediments. Springer-Verlag, Berlin, pp. 127–136.

    Google Scholar 

  • Soudry, D. and Champetier, Y. (1983) Microbial processes in the Negev phosphorites (southern Israel). Sedimentology 30: 411–423.

    Google Scholar 

  • Soutar, A. and Crill, P.A. (1977) Sedimentation and climatic patterns in the Santa Barbara Basin during the 19th and 20th centuries. Geol. Soc. Am. Bull. 88: 1161–1172.

    Google Scholar 

  • Steel, R.J. and Worsley, D. (1984) Svalbard’s post-Caledonian strata – an atlas of sedimentational patterns and palaeogeographic evolution, In: A.M. Spencer et al. (eds.) Petroleum Geology of the North European Margin. Norwegian Petroleum Society, Graham and Trotman, London, pp. 109–135.

    Google Scholar 

  • Strauss, H. (1997) The isotopic composition of sedimentary sulfur through time. Palaeogeogr. Palaeoclimatol. Palaeoecol. 132: 97–118.

    Google Scholar 

  • Strohl, W.R. (1989) Beggiatoaceae, In: P.M. Bryant, N. Pfening and J.G. Holt (eds.) Bergey’s Manual of Systematic Bacteriology. Williams and Wilkins, Baltimore, pp. 2089–2106.

    Google Scholar 

  • Talwani, M. and Eldholm, O. (1977) Evolution of the Norwegian-Greenland Sea. Geol. Soc. Am. Bull. 88: 969–999.

    Google Scholar 

  • Tlig, S., Sassi, A., Belayouni, H. and Machel, D. (1987) Distribution de l’uranium, du thorium, du zirconium, du hafnium et des terres rares (TR) dans les grains de phosphates sédimentaires. Chem. Geol. 62: 209–221.

    CAS  Google Scholar 

  • Toran, L. and Harris, R.F. (1989) Interpretation of sulfur and oxygen isotopes in biological and abiological oxidation. Geochim. Cosmochim. Acta 53: 2341–2348.

    CAS  Google Scholar 

  • Trappe, J. (1998) Phanerozoic Phosphorite Depositional Systems. Lecture Notes in Earth Sciences 76. Springer-Verlag, Berlin, 316 pp.

    Google Scholar 

  • Van Cappellen, P. (1991) The Formation of Marine Apatite: A Kinetic Study. Ph.D. Thesis. Yale University.

    Google Scholar 

  • Van Cappellen, P. and Berner, R.A. (1991) Fluorapatite crystal growth from modified seawater solutions. Geochim. Cosmochim. Acta 55: 1219–1234.

    Google Scholar 

  • Wiessner, W. (1981) The family Beggiatoaceae, In: M.P. Starr, H. Stolp, H.G. Trüper, A. Balows and H.G. Schlegel (eds.) The Prokaryotes. A Handbook of Habitats, Isolation, and Identification of Bacteria. Vol. I. Springer-Verlag, New York, pp. 380–389.

    Google Scholar 

  • Wilkin, R.T. and Barnes, H.L. (1997) Formation processes of framboidal pyrite. Geochim. Cosmochim. Acta 61: 323–339.

    CAS  Google Scholar 

  • Williams, L.A. (1984) Subtidal stromatolites in Monterey Formation and other organic-rich rocks as suggested contributors to petroleum formation. Am. Assoc. Pet. Geol. Bull. 68: 1879–1893.

    CAS  Google Scholar 

  • Williams, L.A. and Reimers, C. (1983) Role of bacterial mats in oxygen-deficient marine basins and coastal upwelling regimes: preliminary report. Geology 11: 267–269.

    Google Scholar 

  • Wright, J., Schrader, H. and Holser, W.T. (1987) Paleoredox variations in ancient oceans recorded by rare earths in fossil apatite. Geochim. Cosmochim. Acta 51: 631–644.

    CAS  Google Scholar 

  • Yamamoto-Ikemoto, R., Matsui, S., Komori, T. and Bosque-Hamilton, E.K. (1998) Interactions between filamentous sulfur bacteria, sulfate reducing bacteria and poly-P accumulating bacteria in anaerobic-oxic activated sludge from a municipal plant. Water Sci. Technol. 37: 599–603.

    CAS  Google Scholar 

Download references

 Acknowledgments

The author is grateful to Professor Vinod C. Tewari for his invitation to contribute to this book. Fieldwork in Svalbard was supported by research grant of the Ministry of Science and Higher Education No. IPY/279/2006, and carried out under the aegis of the IVth International Polar Year project KINNVIKA (IPY ID: 564; Internal Project No. 10 “Geological processes in the formation of the Arctic phosphogenic province”). The manuscript benefited from review by David Soudry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof P. Krajewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Krajewski, K.P. (2011). Phosphatic Microbialites in the Triassic Phosphogenic Facies of Svalbard. In: Tewari, V., Seckbach, J. (eds) STROMATOLITES: Interaction of Microbes with Sediments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0397-1_9

Download citation

Publish with us

Policies and ethics