Advertisement

Morphological Changes in Microscopic–Megascopic Life and Stromatolites Recorded During Late Palaeoproterozoic–Neoproterozoic Transition: The Vindhyan Supergroup, India

  • Purnima Srivastava
  • Vinod Chandra Tewari
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 18)

Abstract

The Palaeoproterozoic to Neoproterozoic era (1,700–542 Ma) is a significant time of transition, reflecting major biotic events in the evolution of life at global level. This time has been marked by the domination of cyanobacterial prokaryotic community, emergence of eukaryotes and their subsequent radiation, transition from microscopic to megascopic life, emergence of metazoan and metaphytes (evolution from plant to animal clades) and evolution from unicellular to multicellular organization. Recent palaeobiological studies in the Vindhyan Supergroup, India, provide substantial data to establish evolutionary history of the Proterozoic life. The available fossil record throws light on biological/morphological changes at microscopic to megascopic level in different time frames in the Vindhyan Supergroup. Palaeoproterozoic to Mesoproterozoic fossil record of the Lower Vindhyans is marked by the diversity and domination of benthic cyanobacterial communities such as Eoentophysalis and Siphonophycus (this is also valid to some extent for rarely well-preserved Neoarchean microfossil assemblages; Kazmierczak and Altermann, Science 298:2351, 2002). In Semri Group, Lower Vindhyans, Glenobotrydion, Glaeodiniopsis, Eosynechococcus and Sphaerophycus are the other commonly occurring benthic coccoid forms. On the contrary, the Neoproterozoic life in the Bhander Group, Upper Vindhyans, is dominated by the planktic communities, like Myxococcoides and acritarchs of variable morphologies and dimensions. Presence of akinites/Archaeoellipsoides is very common in Palaeoproterozoic–Mesoproterozoic Vindhyan microfossil assemblages, which are totally absent in Neoproterozoic assemblages. Diverse cellular filaments of cyanobacterial affinity and domination of planktic coccoidal form genera are the common features of Lower Vindhyans. Rapid precipitation instantly entombed fragile trichomes and preserving them as organic-walled fossils, which were silicified prior to the neomorphic alteration of host carbonates. Intermediate carbonaceous fossil forms, exhibiting super-imposed size range of microscopic and megascopic fossils and inferred as the missing link between the evolution from microscopic to megascopic life, have already been recorded (Srivastava, Curr. Sci. 86:644–646, 2004) from the Rewa Group, Upper Vindhyans (Mesoproterozoic age). Neoproterozoic (Upper Vindhyan) microfossil assemblages are marked by the presence of highly diversified eukaryotes, presence of very small-sized, helically coiled filamentous cyanobacteria Obruchevella, a possible Volvox colony, emergence of large-sized acanthomorphs and exceptionally large-sized dividing cell-like unit and many other unidentified complex morphologies. The most important is the recently reported, process-bearing age-marker acanthomorph (of Cryogenian 850–630 Ma), Trachyhystrichosphaera from the Sirbu Shale Formation, Bhander Group, of the Vindhyan Supergroup, Rajasthan (Srivastava, J. Earth Syst. Sci. 118:575–582, 2009).

Among carbonaceous megafossils, branched filaments at meso- to megascopic level, ensheathed Chuaria, Chuaria with a cluster of small spheroids in centre, with excystment structures, association of Chuaria and Tawuia (Kumar, Precambarian Res. 106:187–211, 2001), dichotomously branched megascopic alga and possibly a pre-metazoan organism are the morphologies of Neoproterozoic Vindhyan assemblages. Presence of Ediacaran fossils, algal mat textures and Arumberia (an organosedimentary structure) are the forms already reported from the Bhander Group, suggesting an Ediacaran (630–542 Ma) age for it. Stromatolites are also extensively developed and well preserved in the Vindhyan Supergroup (Valdiya, J. Geol. Soc. India 10:1–25, 1969; Valdiya, Himalayan Geol. 13:181–214, 1989; Kumar, J. Palaeontol. Soc. India 19:24–27, 1976a; Kumar, J. Palaeontol. Soc. India 18:13–21, 1976b; Kumar, J. Palaeontol. Soc. India 23–24:166–184, 1980; Kumar, 1984; Tewari, Himalayan Geol. 13:143–180, 1989; Tewari, J. Palaeontol. Soc. India 48:155–165, 2003a; Tewari, Gondwana Geol. Mag. 7:383–394, 2003b; Raaben and Tewari, Izvestia Acad. Nauk. CCCP Ser. Geol. 7:17–25, 1987). They have been used successfully in the intra- and interbasinal correlation. The Semri Group is characterized by the dominance of Cyathotes coniform stromatolites and Conophyton, while the Upper Vindhyan shows actively branched stromatolites Baicalia sp. and complete absence of coniform stromatolite (Misra and Kumar, 2005; Misra, Stromatolite biostratigraphy of the Vindhyan Basin, Unpublished Ph.D. Thesis, 2004; Tewari, Gondwana Geol. Mag. 7:383–394, 2003b). Microscopic as well as megascopic fossils, inferred as eukaryotes (acanthomorphs, multicellular algae and Ediacaran fossils), exhibit maximum diversity in the Bhander Group, the Uppermost Vindhyans. Thus, Vindhyan fossil record indicates gradual evolution and morphological complexity from Palaeoproterozoic to Neoproterozoic time. There is no doubt that palaeobiological, sedimentological and palaeoenvironmental changes collectively prepared the ground for the next major shift in the biosphere near the end of the Proterozoic Eon, i.e. “the Cambrian Explosion” (Knoll and Sergeev, Neues Jahrb. Geol. Palaontol. 195:289–302, 1995).

Keywords

Stromatolites Palaeoproterozoic Neoproterozoic Vindhyan Supergroup Cyanobacteria Prokaryotic Metazoan Metaphyte Multicellular Organic-walled microfossils Acritarchs Riphean Ediacaran Palaeobiology Chuaria Tawuia Grypania Obruchevella Semri Group Bhander Group 

Notes

 Acknowledgements

The authors are grateful to Prof. N.L. Chhabra, Professor and Head Department of Geology, Lucknow University, Lucknow, Uttar Pradesh, India and Prof. B.R. Arora, Director, W.I.H.G., Dehradun, Uttarakhand, India, for providing the facilities and the permission to publish the book chapter. Professors Wladislaw Altermann, Ludwig Maximilians University, Munich, Germany, and Nichlas J. Butterfield, Department of Earth Sciences, University of Cambridge, Cambridge, UK, critically reviewed the earlier draft of the chapter and we are indebted to them for constructive criticism and valuable suggestions which improved the present chapter.

 References

  1. Altermann, W. and Kazmierczak, J. (2003) Archean microfossils: a reappraisal of early life on Earth. Res. Microbiol. 154: 611–617.PubMedCrossRefGoogle Scholar
  2. Altermann, W., Kazmierczak, J., Oren, A. and Wright, D. (2006) Microbial calcification and its impact on the sedimentary rock record during 3.5 billion years of Earth history. Geobiology 4: 147–166.CrossRefGoogle Scholar
  3. Auden, J.B. (1938) Vindhyan sedimentation in Son valley, Mirzapur District. Mem. Geol. Surv. India 62(2): 141–250.Google Scholar
  4. Azmi, R.J. (1998) Discovery of Lower Cambrian small shelly fossils and Brachiopods from the Lr. Vindhyan of Son Valley, Central India. J. Geol. Soc. India 52: 381–389.Google Scholar
  5. Azmi, R.J., Joshi, D., Tewari, B.N., Joshi, M.N., Mohan, K. and Srivastava, S.S. (2007) Age of the Vindhyan Supergroup of Central India: an exposition of biochronology vs radiochronology, micropaleontology: application in stratigraphy and palaeooceanography. D.K. Sinha (ed.) Narosa Publishing House, New Delhi, India, pp. 29–62.Google Scholar
  6. Bengtson, S., Belivanova, V. Rasmussen, B. and Whitehouse, M. (2007) GSA. Denver Annual Meeting, Colorado Convention Center.Google Scholar
  7. Bengtson, S., Belivanova, V., Rasmusin, B. and Whitehouse, M. (2009) The controversial Cambrian fossils of the Vindhyan are real but more than a billion years older. www.pnas.org/cgi/doi/10.1073./pnas.0812460106.
  8. Brasier, M. (1999) Discovery of Lower Cambrian small shelly fossils and Brachiopods from the Lr. Vindhyan of Son Valley, Central India. Discussion. J. Geol. Soc. India 53: 727–730.Google Scholar
  9. Butterfield, N.J., Knoll, A.H. and Swett, K. (1994) Palaeobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossil Strata 34: 1–84.Google Scholar
  10. Crawford, A.R. and Compston, W. (1970) The age of the Vindhyan System, Peninsular India. Q. J. Geol. Soc. London 125: 351–371.CrossRefGoogle Scholar
  11. De, C. (2003) Possible organisms similar to Ediacaran forms from the Bhander Group, Vindhyan Supergroup, Late Neoproterozoic of India. J. Asian Earth Sci. 21: 387–395.CrossRefGoogle Scholar
  12. De, C. (2006) Ediacara fossil assemblage in the upper Vindhyans of Central India and its significance. J. Asian Earth Sci. 27: 660–683.CrossRefGoogle Scholar
  13. Golovenok, V.K. and Belova, M.Y. (1984) Obruchevella from the Patom Highland and the Vendian of southern Kazakhstan. Dokl. Akad. Nauk SSSR 272: 1462–1468.Google Scholar
  14. Hofmann, H.J. (1976) Precambrian microflora, Belcher Islands, Canada: significance and systematics. J. Paleontol. 50: 1040–1073.Google Scholar
  15. Hofmann, H.J. (2005) Palaeoproterozoic dubiofossils from India. Revisited-Vindhyan triploblastic animal burrows or pseudofossils? J. Palaeontol. Soc. India 50(2): 113–120.Google Scholar
  16. Horodyski, R.J. and Donaldson, J.A. (1980) Microfossils from the Middle Proterozoic Dismal Lakes Group, Arctic Canada. Precambrian Res. 11: 125–159.CrossRefGoogle Scholar
  17. Kazmierczak, J. and Altermann, W. (2002) Neoarchean biomineralisation by benthic cyanobacteria. Science 298: 2351.PubMedCrossRefGoogle Scholar
  18. Kerr, R.A. (2002) Earliest animals tracks or just mud cracks? Science 295: 1209–1210.PubMedCrossRefGoogle Scholar
  19. Knoll, A.H. (1992) The early evolution of eukaryotes: a geological perspective. Science 256: 622–627.PubMedCrossRefGoogle Scholar
  20. Knoll, A.H. (1994) Neoproterozoic evolution and environmental change, In: S. Bengtson (ed.) Early Life on Earth. Nobel Symposium No 84. Columbia, New York.Google Scholar
  21. Knoll, A.H. and Sergeev, V.N. (1995) Taphonomic and evolutionary changes across the Mesoproterozoic–Neoproterozoic transition. Neues Jahrb. Geol. Palaontol. 195: 289–302.Google Scholar
  22. Knoll, A.H., Swett, K. and Mark, J. (1991) Palaeobiology of a Neoproterozoic tidal flat/lagoonal complex: the Draken Conglomerate Formation, Spitsbergen. J. Paleontol. 65: 531–570.PubMedGoogle Scholar
  23. Knoll, A.H., Javaux, E.J., Hewitt, D. and Cohen, P. (2006) Eukaryotic organisms in Proterozoic oceans. Phill. Trans. R. Soc. B. 361: 1023–1038.CrossRefGoogle Scholar
  24. Kumar, S. (1976a) Significance of stromatolites in the correlation of Semri Series (Lower Vindhyans) of Son Valley and Chitrakut area, U.P. J. Palaeontol. Soc. India 19: 24–27.Google Scholar
  25. Kumar, S. (1976b) Stromatolites from the Vindhyan rocks of Son Valley-Maihar area, district Mirzapur (U.P.) and Satna (M.P.). J. Palaeontol. Soc. India 18: 13–21.Google Scholar
  26. Kumar, S. (1978) Stromatolites and environment of deposition of the Vindhyan Supergroup of Central India. Jour. Palaeont. Soc. India, 21–22: 33–43Google Scholar
  27. Kumar, S. (1980) Stromatolites and Indian biostratigraphy: a review. J. Palaeontol. Soc. India 2324: 166–184.Google Scholar
  28. Kumar, S. (1984) Present study of stromatolite biostratigraphy in India, Geophytology 14(1): 96–110Google Scholar
  29. Kumar, S. (1995) Megafossils from the Mesoproterozoic Rohtas Formation (The Vindhyan Supergroup) Katni area, Central India. Precambrian Res. 72: 171–184.CrossRefGoogle Scholar
  30. Kumar, S. (2001) Mesoproterozoic megafossil Chuaria–Tawuia association may represent parts of a multicellular plant, Vindhyan Supergroup, Central India. Precambrian Res. 106: 187–211.CrossRefGoogle Scholar
  31. Kumar, S. (2009) Controversy concerning Cambrian fossils from the Vindhyan sediments: a re-assessment. J. Palaeontol. Soc. India 54(1): 115–117.Google Scholar
  32. Kumar, S. and Pandey, S.K. (2008a) Arumberia and associated fossils from the Neoproterozoic Maihar Sandstone, Vindhyan Supergroup, Central India. J. Palaeontol. Soc. India 53(1): 83–97.Google Scholar
  33. Kumar, S. and Pandey, S.K. (2008b) Discovery of organic-walled microbiota from the black- bedded chert, Balwan Limestone, the Bhander Group, Lakheri area, Rajasthan. Curr. Sci. 94(6): 797–800.Google Scholar
  34. Kumar, S. and Srivastava, P. (1989) Indian Precambrian Microbiotas from the bedded chert: a review. J. Palaeontol. Soc. India 34: 68–77.Google Scholar
  35. Kumar, S. and Srivastava, P. (1991) Record of microfossils from the nonstromatolitic middle Proterozoic Vindhyan Chert, Chitrakut area, Uttar Pradesh. J. Geol. Soc. India 38: 511–515.Google Scholar
  36. Kumar, S. and Srivastava, P. (1992) Microfossils from the black chert of the Bhagwanpura Limestone (middle Proterozoic) Vindhyan Supergroup, Chittorgarh Area, Rajasthan. Curr. Sci. 62(4): 371–372.Google Scholar
  37. Kumar, S. and Srivastava, P. (1995) Microfossils from the Kheinjua Formation, Middle Proterozoic Semri Group (Lower Vindhyan) Newari Area, Central India. Precambrian Res. 74: 91–117.CrossRefGoogle Scholar
  38. Kumar, S. and Srivastava, P. (1997) A note on the carbonaceous megafossils from the Neoproterozoic Bhander Group, Maihar Area, M. P. J. Paleontol. Soc. India 42: 141–146.Google Scholar
  39. Kumar, S. and Srivastava, P. (2003) Carbonaceous megafossils from the Neoproterozoic Bhander Group, Central India, J. Palaeontol. Soc. India 48: 139–154.Google Scholar
  40. Kumar, A., Gopalan, K. and Rajagopalan, G. (2001) Age of the Lower Vindhyan sediments, Central India. Curr. Sci. 81(7): 806–809.Google Scholar
  41. Maithy, P.K. and Babu, R. (1988a) The mid-Proterozoic Vindhyan microbiota from the Chopan, Southeast Uttar Pradesh. J. Geol. Soc. India 33: 584–590.Google Scholar
  42. Maithy, P.K. and Babu, R. (1988b) Chitinozoa like remains from the Vindhyan Supergroup of Son Valley. Palaeobotanist 37(1): 77–80.Google Scholar
  43. Maithy, P.K. and Shukla, M. (1984) Biological remains from the Suket Shale Formation. Geophytology 14: 212–215.Google Scholar
  44. Malone, S.J., Meert, J.G., Banerjee, D.M., Pandit, M.K., Tamrat, E., Kamenov, G.D., Pradhan, V.R. and Sohl, L.E. (2008) Palaeomagnetism and detrital Zircon geochronology of the Upper Vindhyan sequence, Son Valley and Rajasthan, India: a ca. 1000 Ma closure age for the Purana Basins? Precambrian Res. 164: 137–159, doi: 10.1016/jprecamres.2008.04.004.Google Scholar
  45. Mandal, M.E.A., Goswami, J.N., Deomurari, M.P. and Sharma, K.K. (2002) Ion microprobe Pb/Pb ages of zircons from the Bundelkhand Massif, northern India: implications for crustal evolution of the Bundelkhand-Aravalli Supercontinent. Precambrian Res. 117: 85–100.CrossRefGoogle Scholar
  46. Mathur, S.M. (1981) Stromatolites in the Precambrian Vindhyan Supergroup of Central India. A review. Ann. Soc. Geol. Belg. 104: 87–91.Google Scholar
  47. McMenamin, D.S., Kumar, S. and Awramik, S.M. (1983) Microbial fossils from the Kheinjua Formation, Middle Proterozoic Semri Group (Lower Vindhyan), Son Valley Area, Central India. Precambrian Res. 21: 247–271.CrossRefGoogle Scholar
  48. Misra, Y. (2004) Stromatolite biostratigraphy of the Vindhyan Basin. Unpublished Ph.D. Thesis.Google Scholar
  49. Misra, Y. and Kumar, S. (2005) Coniform stromatolites and the Vindhyan Supergroup, Central India: implication for Basinal correlation and age. J. Palaeontol. Soc. India 50(2): 153–167.Google Scholar
  50. Morris, S.C., Jensen, S. and Butterfield, N.J. (1998) Fossil discoveries in India: continued. Science 282: 1265.CrossRefGoogle Scholar
  51. Prasad, B. (1984) Geology, sedimentation and palaeogeography of the Vindhyan Supergroup, southeastern Rajasthan. Part II: Vindhyan stratigraphy. Mem. Geol. Surv. India 116: 148.Google Scholar
  52. Raaben, M.E. and Tewari, V.C. (1987) Riphean stromatolites in India. Izvestia Acad. Nauk. CCCP Ser. Geol. 7: 17–25 (in Russian).Google Scholar
  53. Raha, P.K. and Das, D.P. (1989) Correlation of stromatolite bearing Upper Proterozoic basins of India and paleogeographic significance. Himalayan Geol. 13: 119–142. K.S. Valdiya and V.C. Tewari (eds.) Wadia Institute of Himalayan Geology, Dehradun.Google Scholar
  54. Rai, V. and Singh, V.K. (2004) Discovery of Obruchevella Reitlinger 1948 from the Late Palaeoproterozoic Lower Vindhyan succession and its significance. J. Palaeontol. Soc. India 49: 189–196.Google Scholar
  55. Rai, V., Shukla, M. and Gautam, R. (1997) Discovery of carbonaceous megafossils (Chuaria–Tawuia assemblage) from the Neoproterozoic Vindhyan succession (Rewa Group), Allahabad-Rewa Area, India. Curr. Sci. 73: 783–788.Google Scholar
  56. Rao, K.S., Lal, C. and Ghosh, D.B. (1977) Algal stromatolites in the Bhander Group of Formations, Vindhyan Supergroup, Satna district, Madhya Pradesh. Rec. Geol. Surv. India 109(2): 38–48.Google Scholar
  57. Rasmussen, B., Bose, P.K., Banerjee, S., Fletcher, I.R. and Mc Naughton, N.J. (2002) 1.6 Ga U-Pb zircon age for the Chorhat Sandstone, Lower Vindhyan, India: possible implications for early evolution of animals. Geology 30: 103–106.CrossRefGoogle Scholar
  58. Ray, J. (2006) Age of the Vindhyan Supergroup: a review of recent findings. J. Earth Syst. Sci. 115(1): 149–160.CrossRefGoogle Scholar
  59. Ray, J.S., Martin, M.W., Veizer, J. and Bowring, S.A. (2002) U-Pb zircon dating and Sr isotope systematics of the Vindhyan Supergroup, India. Geology 30: 131–134.CrossRefGoogle Scholar
  60. Ray, J.S., Veizer, J and Davis, W.J. (2003) C, O, Sr and Pb isotope systematics of carbonate sequences of the Vindhyan Supergroup, India: age, diagenesis, correlation and implication for global events. Precambrian Res. 121: 103–140.CrossRefGoogle Scholar
  61. Sarangi, S. Gopalan, K. Kumar, S. (2004) Pb–Pb age of the earliest megascopic eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: implication for Precambrian atmospheric oxygen evolution. Precambrian Res. 132: 107–121.CrossRefGoogle Scholar
  62. Sastry, M.V.A. and Moitra, A.K. (1984) Vindhyan stratigraphy: a review. Mem. Geol. Surv. India 116(Part II): 109–148.Google Scholar
  63. Schopf, J.W. (1968) Microflora of the Bitter Springs Formation Late Precambrian Central Australia, J. Paleontol. 42: 651–688.Google Scholar
  64. Schopf, J.W. and Blacic, J.M. (1971) New microorganisms from the Bitter Springs Formation (Late Precambrian) of the North Central Amadeus Basin, Australia. J. Paleontol. 45: 925–960.Google Scholar
  65. Schopf, J.W. and Klein, C. (1992) The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge, p. 1348.CrossRefGoogle Scholar
  66. Seilacher, A. Bose, P.K. and Pfluger, F. (1998) Triploblastic animals more than 1 billion years ago: trace fossil evidence from India. Science 282: 80–83.Google Scholar
  67. Sergeev, V.N., Knoll, A.H. and Grotzinger, J.P. (1995) Palaeobiology of the Mesoproterozoic Billyakh Group, Anabar uplift, Northern Siberia. Palaeontol. Soc. Mem. 39: 1–37.Google Scholar
  68. Sergeev, V.N. Sharma, M. and Shukla, Y. (2008) Mesoproterozoic silicified microbiotas of Russia and India – characteristics and contrasts. Palaeobotanist 57: 323–358.Google Scholar
  69. Sharma, M. (2003) Age of Vindhyans-Palaeobiological evidence: a paradigm shift (?). J. Palaeontol. Soc. India 48: 191–214.Google Scholar
  70. Sharma, M. (2006a) Late Palaeoproterozoic (Statherian) carbonaceous films from the Olive Shale (Koldaha Shale), Semri Group, Vindhyan Supergroup, India. J. Palaeontol. Soc. India 51(2): 27–35.Google Scholar
  71. Sharma, M. (2006b) Palaeobiology of Mesoproterozoic Salkhan Limestone, Semri Group, Rohtas, Bihar, India: systematics and significance. J. Earth Syst. Sci. 115(1): 67–98.CrossRefGoogle Scholar
  72. Sharma, M. (2006c) Small-sized akinites from the Mesoproterozoic Salkhan Limestone, Semri Group, Rohtas, Bihar, India: systematic and significance. J. Earth Syst. Sci. 115: 67–99.CrossRefGoogle Scholar
  73. Soni, M.K., Chakraborty, S. and Jain, V.K. (1987) Vindhyan Supergroup – a review. In Purana Basins of India. Mem. Geol. Soc. India 6: 87–138.Google Scholar
  74. Srivastava, P. (2002) Carbonaceous megafossils from the Dholpura Shale, Uppermost Vindhyan Supergroup, Rajasthan: an age implication. J. Palaeontol. Soc. India 47: 97–105.Google Scholar
  75. Srivastava, P. (2004) Carbonaceous fossils from the Panna Shale, Rewa Group (Upper Vindhyans), Central India: a possible link between evolution from micro-megascopic life. Curr. Sci. 86(5): 644–646.Google Scholar
  76. Srivastava, P. (2005) Vindhyan akinites: an indicator of mesoproterozoic biospheric evolution. Orig. Life Evol. Biosph. 35: 175–185.PubMedCrossRefGoogle Scholar
  77. Srivastava, P. (2006) Possible Ediacaran fossils from the Bundi Hill Sandstone, Upper Vindhyans, Rajasthan: their, global significance. Diamond Jubilee International Conference on Changing Scenario in Palaeobotany and allied subjects held at BSIP, Lucknow in Nov. 2006, pp 188.Google Scholar
  78. Srivastava, P. (2008) Some bizarre forms of the Meso-Neoproterozoic Vindhyan Supergroup, India (Abstract). In: World Summit on Ancient Microscopic Fossils, Los Angeles, California, USA. 27 July–2 Aug, 2008.Google Scholar
  79. Srivastava, P (2009) Trachyhystrichosphaera: an age marker acanthomorph from the Bhander Group, Upper Vindhyans, Rajasthan. J. Earth Syst. Sci. 118(5): 575–582.CrossRefGoogle Scholar
  80. Srivastava, P. and Bali, R. (2006) Proterozoic carbonaceous remains from the Chorhat Sandstone: oldest fossils of the Vindhyan Supergroup. Geobios 39: 873–878.CrossRefGoogle Scholar
  81. Stulp, B.K. and Stam, W.T. (1984) Genotypic relationship between strains of Anabaena (cyanophyceae) and their correlation with morphological affinities. Br. Phycological J. 19: 287–301.CrossRefGoogle Scholar
  82. Tandon, K.K. and Kumar, S. (1977) Discovery of annelid and arthropod remains from the Lower Vindhyan rocks (Precambrian) of Central India. Geophytology 7: 126–128.Google Scholar
  83. Tewari, V.C. (1989) Upper Proterozoic-Lower Cambrian stromatlites and Indian stratigraphy. Himalayan Geol. 13: 143–180. K.S. Valdiya and V.C. Tewari (eds.) Wadia Institute of Himalayan Geology, Dehradun.Google Scholar
  84. Tewari, V.C. (1998) Discovery of Lower Cambrian small shelly fossils and Brachiopods from the Lower Vindyan of Son Valley, Central India (Discussion). J. Geol. Soc. India 52: 381–389.Google Scholar
  85. Tewari, V.C. (2003a) Correlation and paleobiology of the Vindhyan and Lesser Himalayan stratigraphic successions. J. Palaeontol. Soc. India 48: 155–165.Google Scholar
  86. Tewari, V.C. (2003b) Correlation of Central Indian Vindhyans and Lesser Himalayan sequences, stratigraphy and paleobiology. Gondwana Geol. Mag. 7: 383–394.Google Scholar
  87. Valdiya, K.S. (1969) Stromatolites of the Himalayan carbonate formations and the Vindhyans. J. Geol. Soc. India 10: 1–25.Google Scholar
  88. Valdiya, K.S. (1989) Precambrian stromatolite biostratigraphy of India – a review. Himalayan Geol. 13: 181–214.Google Scholar
  89. Walter, M.R., Du, R. and Horodyski, R.J. (1990) Coiled carbonaceous megafossils from the middle Proterozoic of Jixian (Tianjin) and Montana. Am. Jour. Sci. 290-A: 133–148.Google Scholar
  90. Yakschin, M.S. (1990) Origin of microstructures in the Early Riphean flat-laminated stromatolites, In: Iskopaemye problematiki SSSR (The Bizarre Fossils of the USSR) Moscow, Nauka, pp. 5–13.Google Scholar
  91. Yakschin, M.S. (1991) Vodoroslevayab mikrobiota nizhnego rifeya anabarskogo podnyatia (Algal microbiota from the Lower Riphean deposits of Anabar Uplift): Novosibirsk, Nauka, Sibirskoe Otdelelenie, 61 pp.Google Scholar
  92. Yin, L. (1985) Microfossils of the Doushantuo Formation in the Yangtze George District, Western Hebei, China. Palaeontol. Cathayana 2: 229–249.Google Scholar
  93. Zang, W.L. (1992) Sinian and early Cambrian floras and biostratigraphy on the South China Platform. Palaeontographica B 224: 75–119.Google Scholar
  94. Zang, W.L. and Walter, M.R. (1992) Late Proterozoic and early Cambrian microfossils and biostratigraphy, Amadeus Basin, central Australia. Mem. Assoc. Aust. Palaeontol. 12: 132.Google Scholar
  95. Zhang, Y. (1989) Multicellular thallophytes with differentiated tissues from Late Proterozoic phosphate rocks of south China. Lethaia 22: 113–132.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Centre of Advanced Study in GeologyUniversity of LucknowLucknowIndia
  2. 2.Wadia Institute of Himalayan GeologyDehradunIndia

Personalised recommendations