Advertisement

The Sulfur Cycle on the Early Earth: Implications for the Search of Life on Europa and Elsewhere

  • Julian Chela-Flores
  • Vinod Chandra Tewari
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 18)

Abstract

The search for life in the universe, especially on the Jovian satellite Europa, could benefit from our knowledge of the bacterial processing of sulfur on the early Earth. We know that sulfate respiring bacteria reduce sulfur and produce large fractionation between its isotopes, especially 32S and 34S. The presence of sulfur patches on the Europan surface, as revealed by the Galileo mission and confirmed by the New Horizons, may have some astrobiological implications. In principle, they could be related to sulfate-reducing bacteria and sulfur disproportionation on the ocean seafloor and its subsurface. The presence of pyrite in the oncolitic and stromatolitic laminae recorded from several Precambrian formations of the world reveal pyrite biomineralization in highly reducing conditions in the Archean and Proterozoic. A review of geological and biogeochemical data from the Precambrian demonstrates that both pyrite and evaporite formed biologically by dissimilatory sulfate reduction. In the present review, we maintain that S-isotope analysis is a most valuable tool for the exploration of the Solar System. In situ analysis of the Europan surficial icy patches should be targets for the future exploration of the Jovian System by the future worldwide effort to explore the Jovian System.

Keywords

Sulfur cycle Early Earth Stromatolites Europa Mars Astrobiology Galileo probe Pyrite biomineralization Sulfur isotopes 

Notes

Acknowledgments

We are grateful to the Abdus Salam International Center for Theoretical Physics ICTP, Trieste, Italy, and Wadia Institute of Himalayan Geology, Dehradun, Uttarakhand, India, for this collaborative research. Vinod C. Tewari carried out research at ICTP between 2005 and 2008 as a senior associate.

References

  1. Bhattacherjee, A.B and Chela-Flores, J. (2004) Search for bacterial waste as a possible signature of life on Europa, In: J. Seckbach, J. Chela-Flores, T. Owen and F. Raulin (eds.) Life in the Universe, Cellular Origin and Life in Extreme Habitats and Astrobiology 7. Springer, Dordrecht, pp. 257–260. http://www.ictp.it/~chelaf/ss27.html.
  2. Brasier, M.D., Green, O.W., Jephcoat, A.P., Kleppe, A.K., Van Kranendonk, M.J., Lindsay, J.F., Steele, A. and Grassineau, N.V. (2002) Questioning the evidence for Earth’s oldest fossils. Nature 416: 76–81.PubMedCrossRefGoogle Scholar
  3. Chela-Flores, J. (2006) The sulphur dilemma: are there biosignatures on Europa’s icy and patchy surface? Int. J. Astrobiol. 5: 17–22.CrossRefGoogle Scholar
  4. Chela-Flores, J., Kumar, N., Seckbach, J. and Tewari, V.C. (2008) Distinguishing between signatures of past life and nonlife. Geophysical Research Abstracts 10. E.G.U. General Assembly, Vienna.Google Scholar
  5. Doran, P.T., Wharton Jr., R.A. and Berry, L.W. (1994) Paleolimnology of the McMurdo Dry Valleys, Antarctica. J. Paleolimnol. 10: 85–114.CrossRefGoogle Scholar
  6. Ellis-Evans, J.C. and Wynn-Williams, D. (1996) A great lake under the ice. Nature 381: 644–646.CrossRefGoogle Scholar
  7. Gehlen, K. (1992) Sulfur in the Earth’s mantle: a review, In: M. Schidlowski (ed.) Early Organic Evolution: Implications for Mineral and Energy Resources. Springer, Berlin, pp. 359–366.CrossRefGoogle Scholar
  8. Goldberg, T., Paulton, W.S. and Strauss, H. (2005) Sulphur and Oxygen isotope signatures of late Neoproterozoic to early Cambrian sulphate, Yangtze Platform, China: diagenetic constraints and sea water evolution. Precam. Res. 137: 223–241.CrossRefGoogle Scholar
  9. Gowen, R., Smith, A., Ambrosi, R., Prieto Ballesteros, O., Barber, S., Barnes, D., Braithwaite, C., Bridges, J., Brown, P., Church, P., Collinson, G., Coates, A., Collins, G., Crawford, I., Dehant, V., Dougherty, M., Chela-Flores, J., Fortes, D., Fraser, G., Gao, Y., Grande, M., Griffiths, A., Grindrod, P., Gurvits, L., Hagermann, A., van Hoolst, T., Hussmann, H., Jaumann, R., Jones, A., Jones, G., Joy, K., Karatekin, O., Kargl, G., Macagnano, A., Mukherjee, A., Muller, P., Palomba, E., Pike, T., Proud, B., Pullen, D., Raulin, F., Richter, L., Ryden, K., Sheridan, S., Sims, M., Sohl, F., Snape, J., Stevens, P., Sykes, J., Tong, V., Stevenson, T., Karl, W., Wilson, L., Wright, I. and Zarnecki, J. (2009) Looking for astrobiological signatures with penetrators on Europa. Physical and Engineering Sciences Exploratory Workshops, W08-115: Biosignatures on Exoplanets; The Identity of Life, 22–26 June 2009, Mulhouse, France. http://www.ictp.it/~chelaf/ESFsummary.pdf.
  10. Grasset, O., Lebreton, J.-P., Blanc, M., Dougherty, M., Erd, C., Greeley, R., Pappalardo, B. and the Joint Science Definition Team (2009) The Jupiter Ganymede Orbiter as part of the ESA/NASA Europa Jupiter System Mission (EJSM). EPSC Abstracts 4, EPSC2009-784. European Planetary Science Congress.Google Scholar
  11. Konhauser, K. (2007) Introduction to Geomicrobiology. Blackwell, Malden, pp. 320, 342–343.Google Scholar
  12. Krajewski, K.P., Cappallen, P.V., Trichet, J., Kuhn, O., Lucus, J., Algarra, A.M., Prevot, L., Tewari, V.C., Knight, T., Lamboy, M. (1994) Biological processes and apatite formation in sedimentary environment. Ecol. Geol. Helv. 87(3): 701–745.Google Scholar
  13. Kruger, H., Krivov, A.V., Sremcevi, M. and Grün, E. (2003) Impact-generated dust clouds surrounding the Galilean moons. Icarus 164: 170–187.CrossRefGoogle Scholar
  14. Lambert, I.B. and Donnelly, T.H. (1992) Global oxidation and a supercontinent in the Proterozoic: evidence from stable isotopic trends, In: M. Schidlowski (ed.) Early Organic Evolution: Implications for Mineral and Energy Resources. Springer, Berlin, pp. 408–414.CrossRefGoogle Scholar
  15. McCord, T.B., Hansen, G.B., Clark, R.N., Martin, P.D., Hibbitts, C.A., Fanale, F.P., Granahan, J.C., Segura, N.M., Matson, D.L., Johnson, T.V., Carlson, R.W., Smythe, W.D., Danielson, G.E. and the NIMS Team (1998) Non-water-ice constituents in the surface material of the icy Galilean satellites from the Galileo near-infrared mapping spectrometer investigation. J. Geophys. Res. 103: 8603–8626.CrossRefGoogle Scholar
  16. Ohmoto, H. (1992) Biogeochemistry of sulfur and the mechanisms of sulfide – sulfate mineralization in Archean oceans, In: M. Schidlowski (ed.) Early Organic Evolution: Implications for Mineral and Energy Resources. Springer, Berlin, pp. 378–397.CrossRefGoogle Scholar
  17. Parker, B.C., Simmons Jr., G.M., Wharton Jr., R.A., Seaburg, K.G. and Love, G.F. (1982) Removal of organic and inorganic matter from Antarctic lakes by aerial escape of blue-green algal mats. J. Phycol. 18: 72–78.Google Scholar
  18. Priscu, J.C., Fritsen, C.H., Adams, E.A., Giovannoni, S.J., Paerl, H.W., McKay, C.P., Doran, P.T., Gordon, D.A., Lanoil, B.D. and Pickney, J.L. (1998) Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280: 2095–2098.PubMedCrossRefGoogle Scholar
  19. Schidlowski, M., Hayes, J.M. and Kaplan, I.R. (1983) Isotopic inferences of ancient biochemistries: carbon, sulfur, hydrogen, and nitrogen, In: J.W. Schopf (ed.) Earth’s Earliest Biosphere Its Origin and Evolution. Princeton University Press, Princeton, pp. 149–186.Google Scholar
  20. Schopf, J.W., Tewari, V.C. and Kudrayvtsev, A.B. (2008) Discovery of a new chert – permineralised microbiota in the Proterozoic Buxa Formation of the Ranjit window, Sikkim, N.E. Lesser Himalaya, India and its Astrobiological Implications. Astrobiol. J. 8(4): 735–746.CrossRefGoogle Scholar
  21. Schultz, H.N. and Schulz, H.D. (2005) Large sulfur bacteria and the formation of phosphorite. Science 307: 416–418.CrossRefGoogle Scholar
  22. Seckbach, J. and Chela-Flores, J. (2007) Extremophiles and chemotrophs as contributors to astrobiological signatures on Europa: a review of biomarkers of sulfate-reducers and other microorganisms, invited talk (6694-32) at instruments methods and missions for astrobiology X, 2007. SPIE Optics and Photonics Symposium, San Diego, California, USA, August 26–30, 2007.Google Scholar
  23. Shen, Y. and Buick, R. (2004) The antiquity of microbial sulfate reduction. Earth-Sci. Rev. 64: 243–272.CrossRefGoogle Scholar
  24. Singer, E. (2003) Vital clues from Europa. New Scientist Magazine 2414(27 September): 22–23, http://www.ictp.it/~chelaf/VitalClues.pdf
  25. Smith, A., Crawford, I.A., Gowen, R.A., Ball, A.J., Barber, S.J., Church, P., Coates, A.J., Gao, Y., Griffiths, A.D., Hagermann, A., Phipps, A., Pike, W.T., Scott, R., Sheridan, S., Sweeting, M., Talboys, D., Tong, V., Wells, N., Biele, J., Chela-Flores, J., Dabrowski, B., Flannagan, J., Grande, M., Grygorczuk, J., Kargl, G., Khavroshkin, O.B., Klingelhoefer, G., Knapmeyer, M., Marczewski, W., McKenna-Lawlor, S., Richter, L., Rothery, D.A., Seweryn, K., Ulamec, S., Wawrzaszek, R., Wieczorek, M. and Wright, I.P. (2008) LunarEX – a proposal to cosmic vision. Exp. Astron. 23(3): 711–740. 10.1007/s10686-008-9109-6 (August 21). http://www.ictp.it/~chelaf/Penetrator.pdf.Google Scholar
  26. Strauss, H. (2003) Sulfur isotopes and the early Archaean sulfur cycle. Precambr. Res. 126: 349–361.CrossRefGoogle Scholar
  27. Tewari, V.C. (1984) Discovery of lower Cambrian stromatolites from the Mussoorie Tal Phosphorites, India. Curr. Sci. 53(6): 319–321.Google Scholar
  28. Tewari, V.C. (1989) Upper proterozoic –Lower Cambrian stromatolites and Indian stratigraphy. Him. Geol. 13: 143–180.Google Scholar
  29. Tewari, V.C. (1991) Palaeomicrobiology, palaeoenvironment and isotope geochemistry of the stromatolitic- carbonate- chert –phosphate association from Lesser Himalaya, India. Nat. Sem. Appl. Geomicrobiol. India. pp. 93–107.Google Scholar
  30. Tewari, V.C. (1993) Ediacaran metaphytes from the Lower Krol Formation, Lesser Himalaya, India. Geosci. J. 14(1, 2): 143–148.Google Scholar
  31. Tewari, V.C. (1994) Sedimentology of the rocks of Deoban basin, Dhuraphat area, Saryu valley, Eastern Kumaon Lesser Himalaya. Geosci. J. 15(2): 117–162.Google Scholar
  32. Tewari, V.C. (1996) Controls of phosphorite formation superimposed on biological activity in the Lesser Himalaya, India. Geosci. J. 16(2): 135–153.Google Scholar
  33. Tewari, V.C. (1999) Vendotaenids: earliest megascopic multicellular algae on Earth. Geosci. J. 20: 77–85.Google Scholar
  34. Tewari, V.C. (2001a) Origins of life in the universe and earliest prokaryotic microorganisms on Earth, In: J. Chela-Flores, et al. (eds.) First Steps in the Origin of Life in the Universe. Kluwer Academic, Dordrecht, pp. 251–254.CrossRefGoogle Scholar
  35. Tewari, V.C. (2001b) Neoproterozoic glaciation in the Uttaranchal Lesser Himalaya and the global palaeoclimate change. Geol. Surv. India Spl. Publ. 65(3): 49–56.Google Scholar
  36. Tewari, V.C. (2004) Microbial diversity in Meso- Neoproterozoic Formations, with particular reference to the Himalaya, In: J. Seckbach (ed.) Origins. Kluwer Academic, Dordrecht, pp. 515–528.Google Scholar
  37. Tewari, V.C. (2007) The rise and decline of the Ediacaran biota: palaeobiological and stable isotopic evidence from the NW and NE Lesser Himalaya, India, In: R.P. Vickers and P. Komarower (eds.) Rise and Fall of the Ediacaran Biota. Special Publication 286. Geological Society of London, London, pp. 77–101.CrossRefGoogle Scholar
  38. Tewari, V.C. (2008) Proterozoic unicellular and multicellular fossils from India and their implications, In: J. Seckbach (ed.) From Fossils to Astrobiology. Cellular Origin, Life in Extreme Habitats and Astrobiology Series. Springer, Dordrecht, pp. 119–139.CrossRefGoogle Scholar
  39. Tewari, V.C. and Chela-Flores, J. (2009) Possible role of sulfur on the early diversification of life on earth Astrobiological implications, In: K.L. Srivastava (ed.) Economic Mineralization. Scientific, Jodhpur, India, pp. 53–56.Google Scholar
  40. Tewari, V.C. and Sial, A.N. (2007) Neoproterozoic–Early Cambrian isotopic variation and chemostratigraphy of the Lesser Himalaya, India, Eastern Gondwana. Chem. Geol. 237: 64–88.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.The Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  2. 2.Instituto de Estudios Avanzados (IDEA)CaracasRepública Bolivariana de Venezuela
  3. 3.Wadia Institute of Himalayan GeologyDehradunIndia

Personalised recommendations