Skip to main content

Possible Fe Isotope Fractionation During Microbiological Processing in Ancient and Modern Marine Environments

  • Chapter
  • First Online:

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 18))

Abstract

Eight iron (Fe) isotopic compositions of iron deposits in biofilms and granules found in two recent burrowing marine invertebrates (the sea urchin ­Echinocardium cordatum and the bivalve Montacuta ferruginosa) were obtained by Multiple-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS). δ56Fe values ranged between –1.78‰ and −0.74‰. The lightest δ56Fe is ­associated with the iron granules in the intestinal wall of E. cordatum and may be due to the abiotic oxidation of source Fe(II) with an isotopic composition reflecting that of light reduced Fe in sediment porewater. This lightest value could represent the best value for the pristine value. Fe in the biofilms was typically heavier by up to +1‰, mean ∼ +0.7‰. These results are compared with Fe isotopic composition of 17 Jurassic limestones from the Rosso Ammonitico Veronese (Italy) containing red and gray hemipelagic facies. The red facies show clear evidence of iron bacteria and fungi, which are interpreted as a possible equivalent of the iron microbial communities associated with the recent organisms. Pronounced Fe isotope fractionation was observed in the Jurassic red hardground levels and in the more condensed red facies where bacteria and fungi lived and have accumulated, with values ­typically lighter by −1‰ than the gray facies where microorganisms were absent. This fractio­nation probably involved the passive accumulation of originally light porewater Fe in the exopolymeric substances (EPS) produced by filamentous bacteria, thereby favoring heavier Fe isotopes. Alternating stages of oxidation Fe(II)/Fe(III) occurred near the sediment/water interfaces as a consequence of microenvironmental changes in the marine porewaters and caused the red/gray facies interlayering. The comparison of the Fe isotopic compositions of the “biominerals” in the recent organisms and in the iron minerals of the red and gray Jurassic facies suggests an isotopic biofractionation of at least ∼+0.7‰. Both studied organisms (the sea urchin and the bivalve) thrive in similar microenvironmental conditions as the ­microorganisms of the condensed red facies. Their Fe isotope compositions are the same, as is the range of the probable biofractionation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraham, K., Opfergelt, S., Fripiat, F., Cavagna, A.-J., de Jong, J.T.M., Foley, S., André, L. and Cardinal, D. (2008) δ30Si and δ29Si determinations on USGS BHVO-1 and BHVO-2 reference materials with a new configuration on a Nu Plasma multi-collector ICP-MS. Geostand. Geoanal. Res. 32: 193–202.

    Article  CAS  Google Scholar 

  • Balci, N., Bullen, T.D., Witte-Lien, K., Shanks, W.C., Motleica, M. and Mandernack, K.W. (2006) Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation. Geochim. Cosmochim. Acta 70: 622–639.

    Article  CAS  Google Scholar 

  • Beard, B.L., Johnson, C.M., Skulan, J.L., Nealson, K.H., Cox, L. and Sun, H. (2003a) Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chem. Geol. 195: 87–117.

    Article  CAS  Google Scholar 

  • Beard, B.L., Johnson, C.M., Von Damm, K.L. and Poulson, R.L. (2003b) Iron isotope constraints on Fe cycling and mass balance in oxygenated Earth oceans. Geology 31: 629–632.

    Article  CAS  Google Scholar 

  • Beard, B.L. and Johnson, C.M. (2004). Fe isotopes variations in the Modern and Ancient earth and other planetory bodies. In Geochemistry of non-traditional stable isotopes, Reviews in Mineralogy and Geochemistry, Mineralogical Society of America 55: 319–357.

    Article  CAS  Google Scholar 

  • Bensing, J.P., Mozley, P.S. and Dunbar, N.W. (2005) Importance of clay in iron transport and sediment reddening: evidence from reduction features of the Abo Formation, New Mexico, U.S.A. J. Sediment Res. 75: 562–571.

    Article  CAS  Google Scholar 

  • Boulvain, F., De Ridder Ch., Mamet, B., Préat, A. and Gillan, D. (2001) Iron microbial communities in Belgian Frasnian carbonate mounds. Facies 44: 47–60.

    Article  Google Scholar 

  • Brantley, S.L., Liermann, L.J. and Bullen, T. (2001) Fractionation of Fe isotopes by soil microbes and organic acids. Geology 29: 535–538.

    Article  CAS  Google Scholar 

  • Brantley, S.L., Liermann, L.J., Guynn, R.L., Anban, A., Icopini, G.A. and Barling, J. (2004) Fe isotopic fracionation during mineral dissolution with and without bacteria. Geochim. Cosmochim. Acta 68: 3189–3204.

    Article  CAS  Google Scholar 

  • Buchanan, J.B., Brown, B.E., Coombs, T.E., Pirie, B.J.S. and Allen, J.A. (1980) The accumulation of ferric iron in the guts of some spatangoid echinoderms. J. Mar. Biol. Assoc. UK 60: 631–640.

    Article  CAS  Google Scholar 

  • Byrne, R.H. and Kester, D.R. (1976) Solubility of hydrous ferric oxide and iron speciation in seawater. Mar. Chem. 4: 255–274.

    CAS  Google Scholar 

  • Canfield, D.E., Thamdrup, B. and Hansen, J.W. (1993) The anaerobic degradation of organic matter in Danish coastal sediments: Iotn reduction, manganese reduction, and sulfate reduction. Geochim. Cosmochim. Acta 57: 3867–3883.

    Article  PubMed  CAS  Google Scholar 

  • Clari, P.A. and Martire, L. (1996) Interplay of cementation, mechanical compaction, and chemical compaction in nodular limestones of the Rosso Ammonitico Veronese (Middle-Upper Jurassic, Northeastern Italy). J. Sediment Res. 66: 447–458.

    CAS  Google Scholar 

  • Clari, P.A., Marini, P., Pastorini, M. and Pavia, G. (1984) Il Rosso Ammonitico Inferiore (Bajociano-Calloviano) nei Monti Lessini settentrionali. Riv. It. Paleont Strat. 90: 15–86.

    Google Scholar 

  • Crosby, H.A., Johnson, C.M., Roden, E.E. and Beard, B.L. (2005) Coupled Fe(II)-Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction. Environ. Sci. Technol. 39: 6698–6704.

    Article  PubMed  CAS  Google Scholar 

  • Gomes da Silva, S., Gillan, D., Dubilier, N. and De Ridder, C. (2006) Characterization by 16S rRNA gene analysis and in situ hybridization of bacteria living in the hindgut of a deposit-feeding echinoid (Echinodermata). J. Mar. Biol. Assoc. U.K. 86: 1209–1213.

    Google Scholar 

  • de Jong, J.T.M., Schoemann, V., Tison, J.-L., Becquevort, S., Masson, F., Lannuzel, D., Petit, J., Chou, L., Weis, D. and Mattielli, N. (2007) Precise measurement of iron isotopes in marine samples by multi-collector inductively coupled plasma mass spectrometry. Anal. Chim. Acta 589: 105–119.

    Article  PubMed  Google Scholar 

  • de Jong, J., Schoemann, V., Lannuzel, D., Tison, J.-L. and Mattielli, N. (2008) High-accuracy determination of iron in seawater by isotope dilution multiple collector inductively coupled plasma mass spectrometry (ID-MC-ICP-MS) using nitrilotriacetic acid chelating resin for preconcentration and matrix separation. Anal. Chim. Acta 623: 126–139.

    Article  PubMed  Google Scholar 

  • De Ridder, C. (1994) Symbioses between spatangoids (Echinoidea) and Thiothrix-like bacteria (Beggiatoales), In: B. David, A. Guille, J.P. Feral and M. Roux (eds.) Echinoderms Through Time; Proceedings of 8th International Echinoderm Conference, Dijon 1993. Balkema, Rotterdam, pp. 619–625.

    Google Scholar 

  • De Ridder, C. and Brigmon, R.L. (2003) “Farming” of microbial mats in the hindgut of echinoids, In: W.E. Krumbein, D.M. Paterson and G.A. Zavarzin (eds.) Fossil and Recent Biofilms: A Natural History of Life on Earth. Kluwer Academic, Boston, pp. 217–225.

    Google Scholar 

  • De Ridder, C. and Jangoux, M. (1993) The digestive tract of the spatangoid echinoid Echinocardium cordatum (Echinodermata): morphofunctional study. Acta Zool. 74: 337–351.

    Article  Google Scholar 

  • De Ridder, C., Jangoux, M. and De Vos, L. (1985) Description and significance of a peculiar intradigestive symbiosis between bacteria and a deposit-feeding echinoid. J. Exp. Mar. Biol. Ecol. 91: 65–76.

    Article  Google Scholar 

  • Dideriksen, K., Baker, J.A. and Stipp, S.L.S. (2006) Iron isotopes in natural carbonate minerals determined by MC-ICP-MS with a 58Fe–54Fe double spike. Geochim. Cosmochim. Acta 70: 118–132.

    Article  CAS  Google Scholar 

  • Emerson, D. and Moyer, C. (1997) Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl. Environ. Microbiol. 63: 4784–4792.

    PubMed  CAS  Google Scholar 

  • Fantle, M.S. and DePaolo, D.J. (2004) Iron isotopic fractionation during continental weathering. Earth Planet. Sci. Lett. 228: 547–562.

    Article  CAS  Google Scholar 

  • Fehr, M.A., Andersson, P.S., Hålenius, U. and Mörth, C.-M. (2008) Iron isotope variations in Holocene sediments of the Gotland Deep, Baltic Sea. Geochim. Cosmochim. Acta 72: 807–826.

    Article  CAS  Google Scholar 

  • Fenchel, T. and Finlay, J. (1995) Ecology and Evolution in Anoxic Worlds. Oxford Series in Ecology and Evolution. Oxford University Press, Oxford, pp. 276.

    Google Scholar 

  • Fortin, D. and Langley, S. (2005) Formation and occurrence of biogenic iron-rich minerals. Earth Sci. Rev. 72: 1–19.

    Article  CAS  Google Scholar 

  • Gage, J. (1966) Observations on the bivalves Montacuta substriata and M. ferruginosa, “commensals” with spatangoids. J. Mar. Biol. Assoc. UK 46: 49–70.

    Article  Google Scholar 

  • Gillan, D. (2003) The study of a Recent iron-encrusted biofilm in the marine environment, In: W.E. Krumbein, D.M. Paterson and G.A. Zavarzin (eds.) Fossil and Recent Biofilms: A Natural History of Life on Earth. Kluwer Academic, Boston, pp. 241–248.

    Google Scholar 

  • Gillan, D. and De Ridder, C. (1995) The microbial community associated with Montacuta ferruginosa, a commensal bivalve of the echnoid Echinocardium cordatum, In: R.H. Emson, A.B. Smith and A.C. Campbell (eds.) Proceedings of 4th European Echinoderm Conference, London. Balkema, Rotterdam, pp. 71–76.

    Google Scholar 

  • Gillan, D. and De Ridder, C. (1997) Morphology of ferric iron-encrsuted biofilm forming on the shell of a burrowing bivalve (Mollusca). Aquat. Microb. Ecol. 12: 1–10.

    Article  Google Scholar 

  • Gillan, D.C. and De Ridder, C. (2001) Accumulation of a ferric mineral in the biofilm of Montacuta ferruginosa (Mollusca, Bivalvia). Biomineralization, bioaccumulation, and inference of paleoenvironments, Chem. Geol. 177: 371–379.

    Article  CAS  Google Scholar 

  • Gillan, D.C., Speksnijder, A.G.C.L., Zwart, G. and De Ridder, C. (1998) Genetic diversity of the biofilm covering Montacuta ferruginosa (Mollusca, Bivalvia) as evaluated by denaturing gradient gel electrophoresis analysis and cloning of PCR-amplified gene fragments coding for 16S rRNA. Appl. Environ. Microbiol. 64: 3464–3472.

    CAS  Google Scholar 

  • Gillan, D.C., Warnau, M., De Vrind-de-Jong, E.W., Boulvain, F., Préat, A. and De Ridder, C. (2000) Iron oxidation and deposition in the biofilm covering Montacuta ferruginosa (Mollusca, Bivalvia). Geomicrobiol. J. 17: 147–151.

    Google Scholar 

  • Hallberg, R. and Ferris, F.G. (2004) Biomineralization by Gallionella. Geomicrobiol. J. 21: 325–330.

    Article  CAS  Google Scholar 

  • Hofstetter, T.B., Schwarzenbach, R.P and Haderlein, S.B. (2003) Reactivity of Fe(II) species associated with clay minerals. Environ. Sci. Technol. 37: 519–528.

    Article  PubMed  CAS  Google Scholar 

  • Icopini, G.A., Anbar, A.D., Ruebush, S.S., Tien, M. and Brantley, S.L. (2004) Iron isotope fractionation during microbial reduction of iron: the importance of adsorption. Geology 32: 205–208.

    Article  CAS  Google Scholar 

  • Jenkyns, H.C. (1974) Origin of red nodular limestones (Ammonitico Rosso, Knollenkalke) in the Mediterranean Jurassic: a diagenetic model, In: K.J. Hsü and H.C. Jenkyns (eds.) Pelagic Sediments: On Land and Under Sea 1. International Association Sedimentologists Special Publication, pp. 249–271.

    Google Scholar 

  • Johnson, C.M., Beard, B.L., Roden, E.E., Newman, D.K. and Nealson, K.H. (2004) Isotopic constraints on biogeochemical cycling of Fe. Rev. Min. Geochem. 55: 359–408.

    Article  CAS  Google Scholar 

  • Johnson, C.M., Beard, B.L. and Roden, E.E. (2008) The iron isotope fingerprints of redox and biogeochemical cycling in Modern and Ancient Earth. Annu. Rev. Earth Planet. Sci. 36: 457–493.

    Article  CAS  Google Scholar 

  • Krynine, P.D. (1949) The origin of red beds. N.Y. Acad. Sci. Trans. Ser. II 2: 60–68.

    Article  Google Scholar 

  • Krynine, P.D. (1950) Petrology, stratigraphy, and origin of the Triassic sedimentary rocks of Connecticut. CT. Geol. Surv. Bull. 73: 273.

    Google Scholar 

  • Libes, S.M. (1992) An introduction to marine biogeochemistry. Wiley, New York, 734 pp.

    Google Scholar 

  • Little, B.J., Wagner, P.A. and Lewandowski, Z. (1997) Spatial relationships between bacteria and mineral surfaces, In: J.F. Banfield and K.H. Nealson (eds.) Interaction Between Microbes and Minerals. Rev. Min. 35: 123–159.

    CAS  Google Scholar 

  • Loreau, J.P. (1972) Pétrographie des calcaires fins au microscope électronique à balayage: introduction à une classification des micrites. C.R. Acad. Sci. Paris 274: 810–813.

    Google Scholar 

  • Mamet, B. and Préat, A. (2003) Sur l’origine de la pigmentation de l’Ammonitico Rosso (Jurassique, région de Vérone, Italie du Nord). Rev. Micropal. 46: 35–46.

    Article  Google Scholar 

  • Mamet, B. and Préat, A. (2006) Iron-bacterial mediation in Phanerozoic red limestones: state of the art. Sediment. Geol. 185: 147–157.

    Article  CAS  Google Scholar 

  • Maréchal, C., Télouk, P. and Albarède, F. (1999) Precise analysis of copper and zinc isotopic compositions by plasma source mass spectrometry. Chem. Geol. 156: 251–273.

    Article  Google Scholar 

  • Martire, L. (1996) Stratigraphy, facies and synsedimentary tectonics in the Jurassic Rosso Ammonitico Veronese (Altopiano di Asiago, NE Italy). Facies 35: 209–236.

    Article  Google Scholar 

  • Massari, F. (1981) Cryptalgal fabrics in the Rosso Ammonitico sequences of Venetian Alps, In: A. Farinaci and S. Elmi (eds.) Rosso Ammonitico Symposium Proceedings. Tecnoscienza, Roma, pp. 435–469.

    Google Scholar 

  • Miller, D.N. and Folk, R.L. (1955) Occurrence of detrital magnetite and ilmenite in red sediments: new approach to significance of redbeds. Am. Assoc. Petrol. Geol. Bull. 39: 338–395.

    Google Scholar 

  • Munn, C.B. (2004) Marine Microbiology: Ecology and Application. Garland, London, 282p.

    Google Scholar 

  • Poitrasson, F. and Freydier, R. (2005) Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS. Chem. Geol. 222: 132–147.

    Article  CAS  Google Scholar 

  • Préat, A., Mamet, B., Bernard, A. and Gillan, D. (1999) Bacterial mediation, red matrices diagenesis, Devonian, Montagne Noire (southern France). Sediment. Geol. 126: 223–242.

    Article  Google Scholar 

  • Préat, A., Morano, S., Loreau, J.P., Durlet, C. and Mamet, B. (2006) Petrography and biosedimentology of the Rosso Ammonitico Veronese (Middle-Upper Jurassic, Northeastern Italy). Facies 52: 265–278.

    Article  Google Scholar 

  • Préat, A., de Jong, J., Mamet, B. and Mattielli, N. (2008a) Stable isotope and microbial mediation in red pigmentation of the Rosso Ammonitico (Mid-Late Jurassic, Verona Area, Italy). Astrobiology 8: 841–857.

    Article  PubMed  Google Scholar 

  • Préat, A., El Hassani, A. and Mamet, B. (2008b) Iron bacteria in Devonian carbonates (Tafilalt, Anti-Atlas, Morocco). Facies 54: 107–120.

    Article  Google Scholar 

  • Schoemann, V., de Jong, J.T.M., Lannuzel, D., Tison, J.-L., Dellile, B., Chou, L., Lancelot, C. and Becquevort, S. (2008) Microbiological control on the cycling of Fe and its isotopes in Antarctic sea ice. Geochim. Cosmochim. Acta 72(12): A209.

    Google Scholar 

  • Severmann, S., Johnson, C.M., Beard, B.L. and McManus, J. (2006) The effect of early diagenesis on the Fe isotope compostions of porewaters and authigenic minerals in continental margin sediments. Geochim. Cosmochim. Acta 70: 2006–2022.

    Article  CAS  Google Scholar 

  • Shiel, A.E., Barling, J., Orian, K.J. and Weis, D. (2009) Matrix effects on the multi-collector inductively coupled plasma mass spectrometric analysis of high-precision cadmium and zinc isotopes. Anal. Chim. Acta 633: 29–37.

    Article  PubMed  CAS  Google Scholar 

  • Staubwasser, M., von Blanckenburg, F. and Schoenberg, R. (2006) Iron isotopes in the early marine diagenetic iron cycle. Geology 34: 629–632.

    Article  CAS  Google Scholar 

  • Taylor, P.D.P., Maeck, R. and De Bièvre, P. (1992) Determination of the absolute isotopic composition and atomic weight of a reference sample of natural iron. Int. J. Mass Spectrom. 121: 111–125.

    Article  CAS  Google Scholar 

  • Teutsch, N., von Gunten, U., Porcelli, D., Cirpka, Q.A. and Halliday, A.N. (2005) Adsorption as a cause for iron isotope fractionation in reduced groundwater. Geochim. Cosmochim. Acta 69: 4175–4185.

    Article  CAS  Google Scholar 

  • Thorsen, M.S. (1998) Microbial activity, oxygen status and fermentation in the gut of the irregular sea urchin Echinocardium cordatum (Spatangoida: Echinodermata). Mar. Biol. 132: 423–433.

    Article  Google Scholar 

  • Thorsen, M.S., Wieland, A., Ploug, H., Kragelund, C. and Nielsen, P.H. (2003) Distribution, identity and activity of symbiotic bacteria in anoxic aggregates from the hindgut of the sea urchin Echinocardium cordatum. Ophelia 57: 1–12.

    Article  Google Scholar 

  • van Houten, F.B. (1961) Climate significance of red beds, In: A.E.M. Nairn (ed.) Descriptive Paleoclimatology. Interscience, New York, pp. 89–139.

    Google Scholar 

  • van Houten, F.B. (1973) Origin of red beds. A review. Annu. Rev. Earth Planet. Sci. 1: 39–61.

    Article  Google Scholar 

  • Walker, T.R., Ribbe, P.H. and Hoena, R.M. (1967) Geochemistry of hornblende alteration in Pliocene red beds, Baja California, Mexico. Geol. Soc. Am. Bull. 78: 1055–1060.

    CAS  Google Scholar 

  • Wasylenki, L.E., Anbar, A.D., Liermann, L.J., Mathur, R., Gordon, G.W. and Brantley, S.L. (2007) Isotope fractionation during microbial metal uptake measured by MC-ICP-MS. J. Anal. Atom. Spectrom. 22: 905–910.

    Article  CAS  Google Scholar 

  • Williams, H.M., McCammon, C.A., Peslier, A.H., Halliday, A.N., Teutsch, N., Levasseur, S. and Burg, J.-P. (2004) Iron isotope fractionation and the oxygen fugacity of the mantle. Science 304: 1656–1659.

    Article  PubMed  CAS  Google Scholar 

  • Zengh, Y., Anderson, R.F., Van Geen, A. and Kuwabara, J. (2000) Authigenic molybdenum formation in marine sediments: a link to porewater sulfide in the Santa Barbara Basin. Geochim. Cosmochim. Acta 64: 4165–4178.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Belgian Fonds National de la Recherche Scientifique (FNRS) (FRFC grant no. 2.4.578.08F) to A. Préat and FRFC grant no. 2.4594.07 to C. De Ridder. The FNRS also supported the development of the MC-ICP-MS facility at the ULB, and we are thankful to N. Mattielli and C. Maerschalk for maintaining the facility and its associated labs in excellent shape. F. Poitrasson and J. Wiederhold are thanked for providing the ETH in-house standards. This is a contribution of the Centre Interuniversitaire de Biologie Marine (CIBIM). Comments by L. Martire (U. of Torino, Italy) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain R. Préat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Préat, A.R., De Jong, J.T.M., De Ridder, C., Gillan, D.C. (2011). Possible Fe Isotope Fractionation During Microbiological Processing in Ancient and Modern Marine Environments. In: Tewari, V., Seckbach, J. (eds) STROMATOLITES: Interaction of Microbes with Sediments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0397-1_29

Download citation

Publish with us

Policies and ethics