Advertisement

The Role of Sulfate Reduction in Stromatolites and Microbial Mats: Ancient and Modern Perspectives

  • Jesse G. Dillon
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 18)

Abstract

Sulfate reduction is an evolutionarily ancient process and sulfate-reducing microorganisms were likely key members of Precambrian stromatolite communities, as they are in modern photosynthetic microbial mats. Some of the highest rates of sulfate reduction ever measured have been observed in hypersaline microbial mats, supporting the view that sulfate respiration is a dominant carbon mineralization process in these communities. Sulfate consumption and the alkalinity that results from carbon utilization have also been linked to carbonate precipitation in lithified mats. Diverse groups of sulfate-reducing bacteria (SRB), primarily members of the Deltaproteobacteria, have been found to live in stratified zones in microbial mats, some localized near the surface despite high levels of oxygenic photosynthesis by cyanobacteria. Culture studies have shown that some SRB can switch to aerobic metabolism under microaerophilic conditions; however, it is not known how SRB tolerate the very high levels found in situ. Possible strategies involve aggregation and diel migration. Recent application of technologies such as nanometer-scale secondary ion mass spectrometry (nanoSIMS) and metagenomics to mats have enabled ultra fine-scale mapping of sulfate reduction activity and have broadened our understanding of how sulfur metabolism fits into the broader picture of microbial diversity and functionality.

Keywords

Microbial mat Hypersaline Sulfate-reducing bacteria (SRB) Deltaproteobacteria Desulfonema–Desulfosarcina–Desulfococcus (Dn–Ds–Dc) group Microcoleus Cyanobacteria Oxycline Lithification Extracellular polymeric substances (EPSs) Aragonite Dolomite Guerrero Negro Solar Lake Highborne Cay 16S rRNA Dissimilatory sulfite reductase (dsrAB) CARD-FISH nanoSIMS 

Notes

Acknowledgments

The author acknowledges the support and mentorship of Dr. David Stahl who introduced me to the amazing world of sulfate-reducing bacteria. The author’s work in Dr Stahl’s lab, upon which some of this is based, was supported by NSF-IGERT grant (DGE-9870713), NSF grant (DEB-0213186) and NASA NAI grant (NCC2-1273). He also acknowledges the editors Dr. Vinod C. Tewari and Dr. Joseph Seckbach for their kind invitation to contribute this chapter as well as the insightful suggestions for improvement by two peer reviewers Dr. Andreas Teske and Dr. Harald Strauss.

References

  1. Allen, M.A., Goh, F., Burns, B.P. and Neilan, B.A. (2009) Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology 7: 82–96.PubMedCrossRefGoogle Scholar
  2. Andres, M.S., Sumner, D.Y., Reid, R.P. and Swart, P.K. (2006) Isotopic fingerprints of microbial respiration in aragonite from Bahamian stromatolites. Geology 34: 973–976.CrossRefGoogle Scholar
  3. Bauld, J., Chambers, L.A. and Skyring, G.W. (1979) Primary productivity, sulfate reduction and sulfur isotope fractionation in algal mats and sediments of Hamelin Pool, Shark Bay, Western Australia. Aust. J. Mar. Freshw. Res. 30: 753–764.CrossRefGoogle Scholar
  4. Baumgartner, L.K., Reid, R.P., Dupraz, C., Decho, A.W., Buckley, D.H., Spear, J.R., et al. (2006) Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment. Geol. 185: 131–145.CrossRefGoogle Scholar
  5. Bebout, B.M. and Garcia-Pichel, F. (1995) UV-B-induced vertical migrations of cyanobacteria in a microbial mat. Appl. Environ. Microbiol. 61: 4215–4222.PubMedGoogle Scholar
  6. Bebout, B.M., Carpenter, S.P., Des Marais, D.J., Discipulo, M., Embaye, T., Garcia-Pichel, F., et al. (2002) Long-term manipulations of intact microbial mat communities in a greenhouse collaboratory: simulating Earth’s present and past field environments. Astrobiology 2: 383–402.PubMedCrossRefGoogle Scholar
  7. Bebout, B.M., Hoehler, T.M., Thamdrup, B., Albert, D., Carpenter, S.P., Hogan, M., et al. (2004) Methane production by microbial mats under low sulfate concentrations. Geobiology 2: 87–96.CrossRefGoogle Scholar
  8. Blank, C.E. (2004) Evolutionary timing of the origins of mesophilic sulphate reduction and oxygenic photosynthesis: a phylogenomic dating approach. Geobiology 2: 1–20.CrossRefGoogle Scholar
  9. Bosak, T. and Newman, D.K. (2003) Microbial nucleation of calcium carbonate in the Precambrian. Geology 31: 577–580.CrossRefGoogle Scholar
  10. Braissant, O., Decho, A.W., Dupraz, C., Glunk, C., Przekop, K.M. and Visscher, P.T. (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5: 401–411.CrossRefGoogle Scholar
  11. Braissant, O., Decho, A.W., Przekop, K.M., Gallagher, K.L., Glunk, C., Dupraz, C. and Visscher, P.T. (2009) Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiol. Ecol. 67: 293–307.PubMedCrossRefGoogle Scholar
  12. Breitbart, M., Hoare, A., Nitti, A., Siefert, J., Haynes, M., Dinsdale, E., et al. (2009) Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Cienegas, Mexico. Environ. Microbiol. 11: 16–34.PubMedCrossRefGoogle Scholar
  13. Burns, B.P., Goh, F., Allen, M. and Neilan, B.A. (2004) Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environ. Microbiol. 6: 1096–1101.PubMedCrossRefGoogle Scholar
  14. Canfield, D.E. and Des Marais, D.J. (1991) Aerobic sulfate reduction in microbial mats. Science 251: 1471–1473.PubMedCrossRefGoogle Scholar
  15. Canfield, D.E. and Des Marais, D.J. (1993) Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat. Geochim. Cosmochim. Acta 57: 3971–3984.PubMedCrossRefGoogle Scholar
  16. Canfield, D.E. and Thamdrup, B. (1994) The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science 266: 1973–1975.PubMedCrossRefGoogle Scholar
  17. Canfield, D.E., Habicht, K.S. and Thamdrup, B. (2000) The Archean sulfur cycle and the early history of atmospheric oxygen. Science 288: 658–661.PubMedCrossRefGoogle Scholar
  18. Casillas-Martinez, L., Gonzalez, M.L., Fuentes-Figueroa, Z., Castro, C.M., Nieves-Mendez, D., Hernandez, C., et al. (2005) Community structure, geochemical characteristics and mineralogy of a hypersaline microbial mat, Cabo Rojo, PR. Geomicrobiol. J. 22: 269–281.CrossRefGoogle Scholar
  19. Catling, D.C., Zahnle, K.J. and McKay, C. (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early earth. Science 293: 839–843.PubMedCrossRefGoogle Scholar
  20. Chafetz, H.S. (1986) Marine peloids; a product of bacterially induced precipitation of calcite. J. Sediment. Res. 56: 812–817.Google Scholar
  21. Cypionka, H. (2000) Oxygen respiration by Desulfovibrio species. Annu. Rev. Microbiol. 54: 827–848.PubMedCrossRefGoogle Scholar
  22. Cypionka, H., Widdel, F. and Pfennig, N. (1985) Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbiol. Ecol. 31: 39–45.CrossRefGoogle Scholar
  23. Decho, A.W., Visscher, P.T. and Reid, R.P. (2005) Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219: 71–86.CrossRefGoogle Scholar
  24. Des Marais, D.J. (1995) The biogeochemistry of hypersaline microbial mats, In: J. Jones (ed.) Advances in Microbial Ecology. Plenum Press, New York, pp. 251–274.CrossRefGoogle Scholar
  25. Des Marais, D.J. (2000) When did photosynthesis emerge on Earth? Science 289: 1703–1705.Google Scholar
  26. Des Marais, D.J. (2003) Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biol. Bull. 204: 160–167.PubMedCrossRefGoogle Scholar
  27. Desnues, C., Rodriguez-Brito, B., Rayhawk, S., Kelley, S., Tran, T., Haynes, M., et al. (2008) Biodiversity and biogeography of phages in modern stromatolites and thrombolites. Nature 452: 340–343.PubMedCrossRefGoogle Scholar
  28. Detmers, J., Bruchert, V., Habicht, K.S. and Kuever, J. (2001) Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes. Appl. Environ. Microbiol. 67: 888–894.PubMedCrossRefGoogle Scholar
  29. Dilling, W. and Cypionka, H. (1990) Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiol. Lett. 71: 123–127.Google Scholar
  30. Dillon, J.G., Fishbain, S., Miller, S.R., Bebout, B.M., Habicht, K.S., Webb, S.M. and Stahl, D.A. (2007) High rates of sulfate reduction in a low-sulfate hot spring microbial mat are driven by a low level of diversity of sulfate-respiring microorganisms. Appl. Environ. Microbiol. 73: 5218–5226.PubMedCrossRefGoogle Scholar
  31. Dillon, J.G., Miller, S., Bebout, B., Hullar, M., Pinel, N. and Stahl, D.A. (2009) Spatial and temporal variability in a stratified hypersaline microbial mat community. FEMS Microbiol. Ecol. 68: 46–58.PubMedCrossRefGoogle Scholar
  32. Dupraz, C. and Visscher, P.T. (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol. 13: 429–438.PubMedCrossRefGoogle Scholar
  33. Falcón, L., Cerritos, R., Eguiarte, L. and Souza, V. (2007) Nitrogen fixation in microbial mat and stromatolite communities from Cuatro Cienegas, Mexico. Microb. Ecol. 54: 363–373.PubMedCrossRefGoogle Scholar
  34. Fike, D., Ussler, W., Eiler, J., Guan, Y.B. and Orphan, V. (2007) Micron-scale resolution of sulfur cycling in a microbial mat. Geochim. Cosmochim. Acta 71: A278–A278.Google Scholar
  35. Fourçans, A., Solé, A., Diestra, E., Ranchou-Peyruse, A., Esteve, I., Caumette, P. and Duran, R. (2006) Vertical migration of phototrophic bacterial populations in a hypersaline microbial mat from Salins-de-Giraud (Camargue, France). FEMS Microbiol. Ecol. 57: 367–377.PubMedCrossRefGoogle Scholar
  36. Fründ, C. and Cohen, Y. (1992) Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats. Appl. Environ. Microbiol. 58: 70–77.PubMedGoogle Scholar
  37. Garcia-Pichel, F., Mechling, M. and Castenholz, R.W. (1994) Diel migrations of microorganisms within a benthic, hypersaline mat community. Appl. Environ. Microbiol. 60: 1500–1511.PubMedGoogle Scholar
  38. Garcia-Pichel, F., Al-Horani, F.A., Farmer, J.D., Ludwig, R. and Wade, B.D. (2004) Balance between microbial calcification and metazoan bioerosion in modern stromatolitic oncolites. Geobiology 2: 49–57.CrossRefGoogle Scholar
  39. Grotzinger, J.P. and Knoll, A.H. (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu. Rev. Earth Planet. Sci. 27: 313–358.PubMedCrossRefGoogle Scholar
  40. Habicht, K.S., Gade, M., Thamdrup, B., Berg, P. and Canfield, D.E. (2002) Calibration of sulfate levels in the Archean ocean. Science 298: 2372–2374.PubMedCrossRefGoogle Scholar
  41. Jonkers, H.M., Ludwig, R., De Wit, R., Pringault, O., Muyzer, G., Niemann, H., et al. (2003) Structural and functional analysis of a microbial mat ecosystem from a unique permanent hypersaline inland lake: ‘La Salada de Chiprana’ (NE Spain). FEMS Microbiol. Ecol. 44: 175–189.PubMedCrossRefGoogle Scholar
  42. Jonkers, H.M., Koh, I.O., Behrend, P., Muyzer, G. and de Beer, D. (2005) Aerobic organic carbon mineralization by sulfate-reducing bacteria in the oxygen-saturated photic zone of a hypersaline microbial mat. Microb. Ecol. 49: 291–300.PubMedCrossRefGoogle Scholar
  43. Jørgensen, B.B. and Cohen, Y. (1977) Solar Lake (Sinai). 5. The sulfur cycle of the benthic cyanobacterial mats. Limnol. Oceanogr. 22: 657–666.CrossRefGoogle Scholar
  44. Kakegawa, T. and Nanri, H. (2006) Sulfur and carbon isotope analyses of 2.7 Ga stromatolites, cherts and sandstones in the Jeerinah Formation, Western Australia. Precambrian Res. 148: 115–124.CrossRefGoogle Scholar
  45. Kasting, J.F. and Siefert, J.L. (2002) Life and the evolution of Earth’s atmosphere. Science 296: 1066–1068.PubMedCrossRefGoogle Scholar
  46. Klein, M., Friedrich, M., Roger, A.J., Hugenholtz, P., Fishbain, S., Abicht, H., et al. (2001) Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J. Bacteriol. 183: 6028–6035.PubMedCrossRefGoogle Scholar
  47. Krekeler, D., Sigalevich, P., Teske, A., Cypionka, H. and Cohen, Y. (1997) A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai), Desulfovibrio oxyclinae sp. nov. Arch. Microbiol. 167: 369–375.CrossRefGoogle Scholar
  48. Krekeler, D., Teske, A. and Cypionka, H. (1998) Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat. FEMS Microbiol. Ecol. 25: 89–96.Google Scholar
  49. Krumbein, W.E. (1979) Photolithotropic and chemoorganotrophic activity of bacteria and algae as related to beachrock formation and degradation (Gulf of Aqaba, Sinai). Geomicrobiol. J. 1: 139–203.CrossRefGoogle Scholar
  50. Kruschel, C. and Castenholz, R.W. (1998) The effect of solar UV and visible irradiance on the vertical movements of cyanobacteria in microbial mats of hypersaline waters. FEMS Microbiol. Ecol. 27: 53–72.CrossRefGoogle Scholar
  51. Kunin, V., Raes, J., Harris, J.K., Spear, J.R., Walker, J.J., Ivanova, N., et al. (2008) Millimeter-scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat. Mol. Syst. Biol. 4: 198.PubMedCrossRefGoogle Scholar
  52. Ley, R.E., Harris, J.K., Wilcox, J., Spear, J.R., Miller, S.R., Bebout, B.M., et al. (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl. Environ. Microbiol. 72: 3685–3695.PubMedCrossRefGoogle Scholar
  53. Lyons, W.B., Long, D.T., Hines, M.E., Gaudette, H.E. and Armstrong, P.B. (1984) Calcification of cyanobacterial mats in Solar Lake, Sinai. Geology 12: 623–626.CrossRefGoogle Scholar
  54. Minz, D., Fishbain, S., Green, S.J., Muyzer, G., Cohen, Y., Rittmann, B.E. and Stahl, D.A. (1999a) Unexpected population distribution in a microbial mat community: sulfate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia. Appl. Environ. Microbiol. 65: 4659–4665.PubMedGoogle Scholar
  55. Minz, D., Flax, J.L., Green, S.J., Muyzer, G., Cohen, Y., Wagner, M., et al. (1999b) Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl. Environ. Microbiol. 65: 4666–4671.PubMedGoogle Scholar
  56. Moezelaar, R., Buvank, S.M. and Stal, L. (1996) Fermentation and sulfur reduction in the mat-building cyanobacterium Microcoleus chthonoplates. Appl. Environ. Microbiol. 62: 1752–1758.PubMedGoogle Scholar
  57. Nisbet, E.G. and Fowler, C.M.R. (1999) Archaean metabolic evolution of microbial mats. Proc. R. Soc. Lond. B 266: 2375–2382.CrossRefGoogle Scholar
  58. Olson, J.M. and Pierson, B.K. (1986) Photosynthesis 3.5 thousand million years ago. Photosynth Res. 9: 251–259.CrossRefGoogle Scholar
  59. Orphan, V.J., Jahnke, L.L., Embaye, T., Turk, K.A., Pernthaler, A., Summons, R.E. and Des Marais, D.J. (2008) Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats of Baja California. Geobiology 6: 376–393.PubMedCrossRefGoogle Scholar
  60. Paerl, H.W., Steppe, T.F. and Reid, R.P. (2001) Bacterially mediated precipitation in marine stromatolites. Environ. Microbiol. 3: 123–130.PubMedCrossRefGoogle Scholar
  61. Papineau, D., Walker, J.J., Mojzsis, S.J. and Pace, N.R. (2005) Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl. Environ. Microbiol. 71: 4822–4832.PubMedCrossRefGoogle Scholar
  62. Philippot, P., Van Zuilen, M., Lepot, K., Thomazo, C., Farquhar, J. and Van Kranendonk, M.J. (2007) Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science 317: 1534–1537.PubMedCrossRefGoogle Scholar
  63. Postgate, J. (1959) Sulphate reduction by bacteria. Annu. Rev. Microbiol. 13: 505–520.CrossRefGoogle Scholar
  64. Reid, R.P., Visscher, P.T., Decho, A.W., Stolz, J.F., Bebout, B.M., Dupraz, C., et al. (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406: 989–992.PubMedCrossRefGoogle Scholar
  65. Riding, R. (1982) Cyanophyte calcification and changes in ocean chemistry. Nature 299: 814–815.CrossRefGoogle Scholar
  66. Risatti, J.B., Chapman, W.C. and Stahl, D.A. (1994) Community structure of a microbial mat: the phylogenetic dimension. Proc. Natl. Acad. Sci. U.S.A. 91: 10173–10177.PubMedCrossRefGoogle Scholar
  67. Sahl, J.W., Pace, N.R. and Spear, J.R. (2008) Comparative molecular analysis of endoevaporitic microbial communities. Appl. Environ. Microbiol. 74: 6444–6446.PubMedCrossRefGoogle Scholar
  68. Schidlowski, M. (1979) Antiquity and evolutionary status of bacterial sulfate reduction: sulfur isotope evidence. Orig. Life Evol. Biosph. 9: 299–311.CrossRefGoogle Scholar
  69. Shen, Y. and Buick, R. (2004) The antiquity of microbial sulfate reduction. Earth Sci. Rev. 64: 243–272.CrossRefGoogle Scholar
  70. Shen, Y., Buick, R. and Canfield, D.E. (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410: 77–81.PubMedCrossRefGoogle Scholar
  71. Sigalevich, P., Baev, M.V., Teske, A. and Cohen, Y. (2000) Sulfate reduction and possible aerobic metabolism of the sulfate-reducing bacterium Desulfovibrio oxyclinae in a chemostat coculture with Marinobacter sp. Strain MB under exposure to increasing oxygen concentrations. Appl. Environ. Microbiol. 66: 5013–5018.PubMedCrossRefGoogle Scholar
  72. Skyring, G.W. (1984) Sulfate reduction in marine sediments associated with cyanobacterial mats in Australia, In: Y. Cohen, R. Castenholz and H. Halvorson (eds.) Microbial Mats: Stromatolites. Alan R. Liss, New York, pp. 265–275.Google Scholar
  73. Sørensen, K.B., Canfield, D.E. and Oren, A. (2004) Salinity responses of benthic microbial communities in a solar saltern (Eilat, Israel). Appl. Environ. Microbiol. 70: 1608–1616.PubMedCrossRefGoogle Scholar
  74. Sørensen, K.B., Canfield, D.E., Teske, A.P. and Oren, A. (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl. Environ. Microbiol. 71: 7352–7365.PubMedCrossRefGoogle Scholar
  75. Souza, V., Espinosa-Asuar, L., Escalante, A.E., Eguiarte, L.E., Farmer, J., Forney, L., et al. (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc. Natl. Acad. Sci. U.S.A. 103: 6565–6570.PubMedCrossRefGoogle Scholar
  76. Stal, L.J. (1994) Microbial Mats in coastal environments, In: L. Stal and P. Caumette (eds.) Microbial Mats. Springer-Verlag, Berlin, pp. 21–32.CrossRefGoogle Scholar
  77. Stal, L.J. (2001) Coastal microbial mats: the physiology of a small-scale ecosystem. S. Afr. J. Bot. 67: 399–410.Google Scholar
  78. Stal, L.J. (2003) Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobiol. J. 20: 463–478.CrossRefGoogle Scholar
  79. Steele, H.L. and Streit, W.R. (2005) Metagenomics: advances in ecology and biotechnology. FEMS Microbiol. Lett. 247: 105–111.PubMedCrossRefGoogle Scholar
  80. Teal, C.S., Mazzullo, S.J. and Bischoff, W.D. (2000) Dolomitization of Holocene shallow-marine deposits mediated by sulfate reduction and methanogenesis in normal-salinity seawater, northern Belize. J. Sediment. Res. 70: 649–663.CrossRefGoogle Scholar
  81. Teske, A., Ramsing, N.B., Habicht, K., Fukui, M., Kåver, J., Jørgensen, B.B. and Cohen, Y. (1998) Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt). Appl. Environ. Microbiol. 64: 2943–2951.PubMedGoogle Scholar
  82. Tyson, G.W., Chapman, J., Hugenholtz, P., Allen, E.E., Ram, R.J., Richardson, P.M., et al. (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428: 37–43.PubMedCrossRefGoogle Scholar
  83. Ueno, Y., Ono, S., Rumble, D. and Maruyama, S. (2008) Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: new evidence for microbial sulfate reduction in the early Archean. Geochim. Cosmochim. Acta 72: 5675–5691.CrossRefGoogle Scholar
  84. van Lith, Y., Vasconcelos, C., Warthmann, R., Martins, J.C.F. and McKenzie, J.A. (2002) Bacterial sulfate reduction and salinity: two controls on dolomite precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil). Hydrobiologia 485: 35–49.CrossRefGoogle Scholar
  85. van Lith, Y., Warthmann, R., Vasconcelos, C. and McKenzie, J.A. (2003) Microbial fossilization in carbonate sediments: a result of the bacterial surface involvement in dolomite precipitation. Sedimentology 50: 237–245.CrossRefGoogle Scholar
  86. Vasconcelos, C. and McKenzie, J.A. (1997) Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). J. Sediment. Res. 67: 378–390.Google Scholar
  87. Vasconcelos, C., McKenzie, J.A., Bernasconi, S., Grujic, D. and Tiens, A.J. (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377: 220–222.CrossRefGoogle Scholar
  88. Villanueva, L., Navarrete, A., Urmeneta, J., White, D.C. and Guerrero, R. (2007) Analysis of diurnal and vertical microbial diversity of a hypersaline microbial mat. Arch. Microbiol. 188: 137–146.PubMedCrossRefGoogle Scholar
  89. Visscher, P.T., Reid, R.P., Bebout, B.M., Hoeft, S.E., Macintyre, I.G. and Thompson, J.A. (1998) Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): the role of sulfur cycling. Am. Mineral. 83: 1482–1493.Google Scholar
  90. Visscher, P.T., Gritzer, R.F. and Leadbetter, E.R. (1999) Low-molecular-weight sulfonates, a major substrate for sulfate reducers in marine microbial mats. Appl. Environ. Microbiol. 65: 3272–3278.PubMedGoogle Scholar
  91. Visscher, P.T., Reid, R.P. and Bebout, B.M. (2000) Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 28: 919–922.CrossRefGoogle Scholar
  92. Wagner, M., Roger, A.J., Flax, J.L., Brusseau, G.A. and Stahl, D.A. (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180: 2975–2982.PubMedGoogle Scholar
  93. Walter, M.R. (1994) Stromatolites: the main geological source of information on the evolution of the early benthos, In: S. Bengston (ed.) Early Life on Earth. Columbia University Press, New York, pp. 270–286.Google Scholar
  94. Ward, D.M. and Olson, G.J. (1980) Terminal processes in the anaerobic degradation of an algal-bacterial mat in a high-sulfate hot spring. Appl. Environ. Microbiol. 40: 67–74.PubMedGoogle Scholar
  95. Warthmann, R., van Lith, Y., Vasconcelos, C., McKenzie, J.A. and Karpoff, A.M. (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28: 1091–1094.CrossRefGoogle Scholar
  96. Widdel, F. (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria, In: A. Zehnder (ed.) Biology of Anaerobic Microorganisms. Wiley, New York, pp. 469–575.Google Scholar
  97. Wright, D.T. (1999) The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sediment. Geol. 126: 147–157.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Biological SciencesCalifornia State UniversityLong BeachUSA

Personalised recommendations