Skip to main content

Microbial Diversity in Modern Stromatolites

  • Chapter
  • First Online:
STROMATOLITES: Interaction of Microbes with Sediments

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 18))

Abstract

Poised at the biosphere–lithosphere interface, the microbial consortia associated with stromatolites have a profound impact on the evolution of Earth’s environment. In this chapter, we review the current state of knowledge of microbial diversity in extant stromatolites by examining data generated using cultivation-independent molecular techniques. Specifically, we compare natural stromatolitic mat systems of three distinctive habitats: the hypersaline pools of Shark Bay, Australia; the open ocean stromatolites of Highborne Cay, Bahamas; and the lacustrine lagoons of Ruidera Pools, Spain. We compare these natural systems to an experimental artificial microbialite, looking for fundamental differences and similarities within the microbial communities. Of the 21 bacterial phyla or sub-phyla detected in the various stromatolite ecosystems, only Cyanobacteria were found dominant in all habitats. Within the phylum, few cyanobacterial ecotypes were common to all ecosystems. The marine and hypersaline stromatolite ecosystems had significantly higher bacterial diversity than did the artificial microbialite or the freshwater stromatolite, and the diversity approached that observed in non-lithifying hypersaline microbial mats. Finally, we consider the ecological insights provided by the acquisition of metagenomic sequence data for understanding stromatolite diversity and function. These high-throughput metagenomic sequencing approaches have been applied to modern stromatolitic and microbialitic mat communities and have facilitated a higher resolution characterization of microbial diversity at the molecular-level, thus providing an initial glimpse into the functional complexity of these dynamic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

 References

  • Arp, G., Reimer, A. and Reitner, J. (1999) Calcification in cyanobacterial biofilms of alkaline salt lakes. Eur. J. Phycol. 34: 393–403.

    Article  Google Scholar 

  • Arp, G., Reimer, A. and Reitner, J. (2001) Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science 292: 1701–1704.

    Article  PubMed  CAS  Google Scholar 

  • Awramik, S.A. (1984) Ancient stromatolites and microbial mats, In: Y. Cohen, R.W. Castenholz and H.O. Halvorson (eds.) Microbial Mats: Stromatolites 3. Alan R Liss, New York, pp. 1–22.

    Google Scholar 

  • Baumgartner, L.K., Reid, R.P., Dupraz, C., Decho, A.W., Buckley, D.H., Spear, J.R., Przekop, K.M. and Visscher, P.T. (2006) Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment. Geol. 185: 131–145.

    Article  CAS  Google Scholar 

  • Baumgartner, L.K., Spear, J.R., Buckley, D.H., Pace, N.R., Reid, R.P., Dupraz, C. and Visscher, P.T. (2009) Microbial diversity in modern marine stromatolites, Highborne Cay, Bahamas. Environ. Microbiol. 11: 2710–2719.

    Article  PubMed  Google Scholar 

  • Bebout, B.M., Hoehler, T.M., Thamdrup, B., Albert, D., Carpenter, S.P., Hogan, M., Turk, K.A. and Des Marais, D.J. (2004) Methane production by microbial mats under low sulphate concentrations. Geobiology 2: 87–96.

    Article  CAS  Google Scholar 

  • Bhaya, D., Grossman, A.R., Steunou, A.S., Khuri, N., Cohan, F.M., Hamamura, N., Melendrez, M.C., Bateson, M.M., Ward, D.M. and Heidelberg, J.F. (2007) Population level functional diversity in a microbial community revealed by comparative genomic and metagenomic analyses. ISME J. 1: 703–713.

    Article  PubMed  CAS  Google Scholar 

  • Breitbart, M., Hoare, A., Nitti, A., Siefert, J., Haynes, M., Dinsdale, E., Edwards, R., Souza, V., Rohwer, F. and Hollander, D. (2008) Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas, Mexico. Environ. Microbiol. 11: 16–34.

    Article  PubMed  Google Scholar 

  • Burne, R.V. and Moore, L.S. (1987) Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2: 241–254.

    Article  Google Scholar 

  • Burns, B.P., Goh, F., Allen, M. and Neilan, B.A. (2004) Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environ. Microbiol. 6: 1096–1101.

    Article  PubMed  CAS  Google Scholar 

  • Burns, B.P., Seifert, A., Goh, F., Pomati, F., Jungblut, A.D., Serhat, A. and Neilan, B.A. (2005) Genetic potential for secondary metabolite production in stromatolite communities. FEMS Microbiol. Lett. 243: 293–301.

    Article  PubMed  CAS  Google Scholar 

  • Byerly, G.R., Lowe, L.S. and Walsh, M.M. (1986) Stromatolites from 3300–3500 Myr Swaziland Supergroup, Barbeton Mountain Land, South Africa. Nature 319: 489–491.

    Article  CAS  Google Scholar 

  • Decho, A.W., Visscher, P.T. and Reid, R.P. (2005) Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolites. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219: 71–86.

    Article  Google Scholar 

  • DeLong, E.F. (1992) Archaea in coastal marine environments. Proc. Natl. Acad. Sci. U.S.A. 89: 5685–5689.

    Article  PubMed  CAS  Google Scholar 

  • DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P. and Andersen, G.L. (2006a) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72: 5069–5072.

    Article  PubMed  CAS  Google Scholar 

  • DeSantis Jr., T.Z., Hugenholtz, P., Keller, K., Brodie, E.L., Larsen, N., Piceno, Y.M., Phan, R. and Andersen, G.L. (2006b) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res. 34: W394–399.

    Article  PubMed  CAS  Google Scholar 

  • Desnues, C.G., Rodriguez-Brito, B., Rayhawk, S., Kelley, S., Tran, T., Haynes, M., Lui, H., Hall, D., Angly, F.E., Edwards, R.A., Thurber, R.V., Reid, R.P., Siefert, J., Souza, V., Valentine, D., Swan, B., Breitbart, M. and Rohwer, F. (2008) Biodiversity and biogeography of phages in modern stromatolites and thrombolites. Nature 452: 340–345.

    Article  PubMed  CAS  Google Scholar 

  • Dill, R.F., Shinn, E.A., Jones, A.T., Kelly, K. and Steinen, R.P. (1986) Giant subtidal stromatolites forming in normal salinity water. Nature 324: 55–58.

    Article  Google Scholar 

  • Dravis, J.J. (1983) Hardened subtidal stromatolites, Bahamas. Science 219: 385–386.

    Article  PubMed  CAS  Google Scholar 

  • Dupraz, C. and Visscher, P.T. (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol. 13: 429–438.

    Article  PubMed  CAS  Google Scholar 

  • Dupraz, C., Visscher, P.T., Baumgartner, L.K. and Reid, R.P. (2004) Microbe-mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51: 745–765.

    Article  CAS  Google Scholar 

  • Dupraz, C., Pattisina, R. and Verrecchia, E.P. (2006) Translation of energy into morphology: simulation of stromatolite morphospace using a stochastic model. Sediment. Geol. 185: 185–203.

    Article  Google Scholar 

  • Edwards, R.A., Rodriguez-Brito, B., Wegley, L., Haynes, M., Breitbart, M., Peterson, D.M., Saar, M.O., Alexander, S., Alexander, E.C. and Rohwer, F. (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7: 57.

    Article  PubMed  Google Scholar 

  • Elser, J.J., Schampel, J.H., Garcia-Pichel, F., Wade, B.D., Souza, V., Eguiarte, L.E., Escalante, A. and Farmer, J.D. (2005a) Effects of phosphorus enrichment and grazing snails on modern stromatolitic microbial communities. Freshw. Biol. 50: 1808–1825.

    Article  CAS  Google Scholar 

  • Elser, J.J., Schampel, J.H., Kyle, M., Watts, J., Carson, E.W., Dowling, T.E., Tang, C. and Roopnarine, P.D. (2005b) Response of grazing snails to phosphorus enrichment of modern stromatolitic microbial communities. Freshw. Biol. 50: 1826–1835.

    Article  CAS  Google Scholar 

  • Fenchel, T. and Kühl, M. (2000) Artificial cyanobacterial mats: growth, structure, and vertical zonation patterns. Microb. Ecol. 40: 85–93.

    PubMed  Google Scholar 

  • Foster, J.S. and Mobberley, J.M. (2010) Past, present, and future: microbial mats as models for astrobiological research. In: J. Seckbach and A. Oren (eds.) Cellular Origin, Life in Extreme Habitats and Astrobiology: Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems. Springer, pp. 563–582.

    Google Scholar 

  • Foster, J.S., Green, S.J., Ahrendt, S.R., Hetherington, K.L., Golubic, S., Reid, R.P. and Bebout, L. (2009) Molecular and morphological characterization of cyanobacterial diversity in the marine stromatolites of Highborne Cay, Bahamas. ISME J. 3: 573–587.

    Article  PubMed  CAS  Google Scholar 

  • Goh, F., Allen, M.A., Leuko, S., Kawaguchi, T., Decho, A.W., Burns, B.P. and Neilan, B.A. (2009) Determining the specific microbial populations and their spatial distribution within the stromatolite ecosystem of Shark Bay. ISME J. 3: 383–396.

    Article  PubMed  CAS  Google Scholar 

  • Golubic, S. and Browne, K.M. (1996) Schizothrix gebeleinii sp. nova builds subtidal stromatolites, Lee Stocking Island. Algol. Stud. 83: 273–290.

    Google Scholar 

  • Green, S.J., Blackford, C., Bucki, P. and Jahnke, L.L. (2008) A salinity and sulfate manipulation of hypersaline microbial mats reveals stasis in the cyanobacterial community structure. ISME J. 2: 457–470.

    Article  PubMed  CAS  Google Scholar 

  • Grotzinger, J.P. and Knoll, A.H. (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu. Rev. Earth Planet. Sci. 27: 313–358.

    Article  PubMed  CAS  Google Scholar 

  • Handelsman, J. (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68: 669–685.

    Article  PubMed  CAS  Google Scholar 

  • Havemann, S.A. and Foster, J.S. (2008) Comparative characterization of the microbial diversities of an artificial microbialite model and a natural stromatolite. Appl. Environ. Microbiol. 74: 7410–7421.

    Article  PubMed  CAS  Google Scholar 

  • Hiraishi, A. and Ueda, Y. (1994) Intrageneric structure of the genus Rhodobacter: transfer of Rhodobacter suljidophilus and related marine species to the genus Rhodovulum gen. nov. Int. J. Syst. Bacteriol. 44: 15–23.

    Article  Google Scholar 

  • Hughes, J.B., Hellmann, J.J., Ricketts, T.H. and Bohannan, B.J. (2001) Counting the uncountable: statistical approaches to estimating microbial diversity. Appl. Environ. Microbiol. 67: 4399–4406.

    Article  PubMed  CAS  Google Scholar 

  • Kasting, J.F. (2001) Earth history. The rise of atmospheric oxygen. Science 293: 819–820.

    Article  PubMed  CAS  Google Scholar 

  • Knauth, L.P. (1998) Salinity history of the Earth’s early ocean. Nature 395: 554.

    Article  PubMed  CAS  Google Scholar 

  • Kumar, S., Nei, M., Dudley, J. and Tamura, K. (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 9: 299–306.

    Article  PubMed  CAS  Google Scholar 

  • Kunin, V., Raes, J., Harris, J.K., Spear, J.R., Walker, J.J., Ivanova, N., von Mering, C., Bebout, B.M., Pace, N.R., Bork, P. and Hugenholtz, P. (2008) Millimeter-scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat. Mol. Syst. Biol. 4: 198.

    Article  PubMed  Google Scholar 

  • Lane, D.J. (1991) 16S/23S rRNA sequencing, In: E. Stackebrandt and M. Goodfellow (eds.) Nucleic Acid Techniques in Bacterial Systematics. Wiley, Chichester, pp. 115–175.

    Google Scholar 

  • Ley, R.E., Harris, J.K., Wilcox, J., Spear, J.R., Miller, S.R., Bebout, B.M., Maresca, J.A., Bryant, D.A., Sogin, M.L. and Pace, N.R. (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl. Environ. Microbiol. 72: 3685–3695.

    Article  PubMed  CAS  Google Scholar 

  • Lozupone, C.A. and Knight, R. (2007) Global patterns in bacterial diversity. Proc. Natl. Acad. Sci. U.S.A. 104: 11436–11440.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S., Jobb, G., Forster, W., Brettske, I., Gerber, S., Ginhart, A.W., Gross, O., Grumann, S., Hermann, S., Jost, R., Konig, A., Liss, T., Lussmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Stamatakis, A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A. and Schleifer, K.H. (2004) ARB: a software environment for sequence data. Nucleic Acids Res. 32: 1363–1371.

    Article  PubMed  CAS  Google Scholar 

  • Minckley, W. (1969) Environments of the Bolson of Cuatro Cienegas, Cuahuila, Mexico, with Special Reference to the Aquatic Biota. University of Texas El Paso Science Series 2, Texas Western Press, El Paso, TX, pp. 1–65.

    Google Scholar 

  • Minz, D., Fishbain, S., Green, S.J., Muyzer, G., Cohen, Y., Rittmann, B.E. and Stahl, D.A. (1999) Unexpected population distribution in a microbial mat community: sulfate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia. Appl. Environ. Microbiol. 65: 4659–4665.

    PubMed  CAS  Google Scholar 

  • Monty, C. (1977) Evolving concepts on the nature and the ecological significance of stromatolites, In: E. Flügel (ed.) Fossil Algae, Recent Results and Developments. Springer-Verlag, Berlin, pp. 15–35.

    Chapter  Google Scholar 

  • Neilan, B.A., Burns, B.P., Relman, D.A. and Lowe, D.R. (2002) Molecular identification of cyanobacteria associated with stromatolites from distinct geographical locations. Astrobiology 2: 271–280.

    Article  PubMed  CAS  Google Scholar 

  • Nogales, B., Moore, E.R., Llobet-Brossa, E., Rossello-Mora, R., Amann, R. and Timmis, K.N. (2001) Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl. Environ. Microbiol. 67: 1874–1884.

    Article  PubMed  CAS  Google Scholar 

  • Omoregie, E.O., Crumbliss, L.L., Bebout, B.M. and Zehr, J.P. (2004) Determination of nitrogen-fixing phylotypes in Lyngbya sp. and Microcoleus chthonoplastes cyanobacterial mats from Guerrero Negro, Baja California, Mexico. Appl. Environ. Microbiol. 70: 2119–2128.

    Article  PubMed  CAS  Google Scholar 

  • Ordóñez, S., González-Martin, J.A., García del Cura, M.Á. and Pedley, H.M. (2005) Temperate and semi-arid tufas in the Pleistocene to recent fluvial barrage system in the Mediterranean area: the Ruidera Lakes National Park (Central Spain). Geomorphology 69: 332–350.

    Article  Google Scholar 

  • Overbeek, R., Begley, T., Butler, R.M., Choudhuri, J.V., Chuang, H.Y., Cohoon, M., de Crecy-Lagard, V., Diaz, N., Disz, T., Edwards, R., Fonstein, M., Frank, E.D., Gerdes, S., Glass, E.M., Goesmann, A., Hanson, A., Iwata-Reuyl, D., Jensen, R., Jamshidi, N., Krause, L., Kubal, M., Larsen, N., Linke, B., McHardy, A.C., Meyer, F., Neuweger, H., Olsen, G., Olson, R., Osterman, A., Portnoy, V., Pusch, G.D., Rodionov, D.A., Ruckert, C., Steiner, J., Stevens, R., Thiele, I., Vassieva, O., Ye, Y., Zagnitko, O. and Vonstein, V. (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 33: 5691–5702.

    Article  PubMed  CAS  Google Scholar 

  • Paerl, H.W., Steppe, T.F. and Reid, R.P. (2001) Bacterially mediated precipitation in marine stromatolites. Environ. Microbiol. 3: 123–130.

    Article  PubMed  CAS  Google Scholar 

  • Papineau, D., Walker, J.J., Mojzsis, S.J. and Pace, N.R. (2005) Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl. Environ. Microbiol. 71: 4822–4832.

    Article  PubMed  CAS  Google Scholar 

  • Pedley, M. (2000) Ambient temperature freshwater microbial tufas, In: R. Riding and S.M. Awramik (eds.) Microbial Sediments. Springer, Heidelberg, pp. 179–186.

    Google Scholar 

  • Perkins, R., Kromkamp, J.C. and Reid, R.P. (2007) Importance of light and oxygen for photochemical reactivation in photosynthetic stromatolite communities after natural sand burial. Mar. Ecol. Prog. Ser. 349: 23–32.

    Article  Google Scholar 

  • Pinckney, J.L. and Reid, R.P. (1997) Productivity and community composition of stromatolitic microbial mats in the Exuma Cays, Bahamas. Facies 36: 204–207.

    Google Scholar 

  • Playford, P.E. and Cockbain, A.E. (1976) Modern algal stromatolites at Hamelin Pool, a hypersaline barred basin in Shark Bay, Western Australia, In: M.R. Walter (eds.) Stromatolites. Developments in Sedimentology 20. Elsevier, Amsterdam, pp. 389–411.

    Chapter  Google Scholar 

  • Reid, R.P., Macintyre, I.G., Browne, K.M., Steneck, R.S. and Miller, T. (1995) Modern marine stromatolites in the Exuma Cays, Bahamas – uncommonly common. Facies 33: 1–17.

    Article  Google Scholar 

  • Reid, R.P., Visscher, P.T., Decho, A.W., Stolz, J.F., Bebout, B.M., Dupraz, C., Macintyre, I.G., Paerl, H.W., Pinckney, J.L., Prufert-Bebout, L., Steppe, T.F. and DesMarais, D.J. (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406: 989–992.

    Article  PubMed  CAS  Google Scholar 

  • Reid, R.P., James, N.P., Macintyre, I.G. and Dupraz, C.P. (2003) Shark Bay stromatolites: microfabrics and reinterpretation of origins. Facies 49: 299–324.

    Google Scholar 

  • Riding, R. (1991) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47: 179–214.

    Article  Google Scholar 

  • Santos, F., Peña, A., Nogales, B., Soria, E., Garcia del Cura, M.Á., González-Martin, J.A. and Antón, J. (2010) Bacterial diversity in modern freshwater stromatolites from Ruidera Pools Natural Park, Spain. System. Appl. Microbiol. 33: 209–221.

    Google Scholar 

  • Schloss, P.D. and Handelsman, J. (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71: 1501–1506.

    Article  PubMed  CAS  Google Scholar 

  • Sørensen, K.B., Canfield, D.E., Teske, A.P. and Oren, A. (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl. Environ. Microbiol. 71: 7352–7365.

    Article  PubMed  Google Scholar 

  • Souza, V., Espinosa-Asuar, L., Escalante, A.E., Equiarte, L.E., Farmer, J., Forney, L., Lloret, L., Rodriguez-Martinez, J.M., Soveron, X., Dirzo, R. and Elser, J.J. (2006) An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proc. Natl. Acad. Sci. U.S.A. 103: 6565–6570.

    Article  PubMed  CAS  Google Scholar 

  • Stal, L.J. (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol. 131: 1–32.

    Article  CAS  Google Scholar 

  • Steppe, T.F., Pinckney, J.L., Dyble, J. and Paerl, H.W. (2001) Diazotrophy in modern marine Bahamian stromatolites. Microb. Ecol. 41: 36–44.

    PubMed  CAS  Google Scholar 

  • Stolz, J.F., Feinstein, T.N., Salsi, J., Visscher, P.T. and Reid, R.P. (2001) TEM analysis of microbial mediated sedimentation and lithification in modern marine stromatolites. Am. Mineral. 86: 826–833.

    CAS  Google Scholar 

  • Suttle, C.A. (2005) Viruses in the sea. Nature 437: 356–361.

    Article  PubMed  CAS  Google Scholar 

  • Visscher, P.T. and Stolz, J.F. (2005) Microbial mats as bioreactors: populations, processes and products. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219: 87–100.

    Article  Google Scholar 

  • Ward, D.M., Ferris, M.J., Nold, S.C. and Bateson, M.M. (1998) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol. Mol. Biol. Rev. 62: 1353–1370.

    PubMed  CAS  Google Scholar 

  • Ward, D.M., Cohan, F.M., Bhaya, D., Heidelberg, J.F., Kühl, M. and Grossman, A. (2008) Genomics, environmental genomics and the issue of microbial species. Heredity 100: 207–219.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, T., Sekiguchi, Y., Hanada, S., Imachi, H., Ohashi, A., Harada, H. and Kamagata, Y. (2006) Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int. J. Syst. Evol. Microbiol. 56: 1331–1340.

    Article  PubMed  CAS  Google Scholar 

  • Yurkov, V.V. and Beatty, J.T. (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol. Mol. Biol. Rev. 62: 695–724.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie S. Foster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Foster, J.S., Green, S.J. (2011). Microbial Diversity in Modern Stromatolites. In: Tewari, V., Seckbach, J. (eds) STROMATOLITES: Interaction of Microbes with Sediments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0397-1_17

Download citation

Publish with us

Policies and ethics