Skip to main content

Living Stromatolites of Shark Bay, Western Australia: Microbial Inhabitants

  • Chapter
  • First Online:
STROMATOLITES: Interaction of Microbes with Sediments

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 18))

  • 2502 Accesses

Abstract

An abundance of stromatolites throughout the Earth’s geological records has been widely documented. The oldest examples of these preserved stromatolites are dated to more than three billion years of age (Byerly et al., 1986; Lowe, 1980; Walter et al., 1980). It is under debate whether they are of abiogenic or biogenic origin (Schopf et al., 2002), since geological processes of sedimentation can mimic the layering caused by microbes (Grotzinger and Knoll, 1999). However, recent studies have also reflected a growing acceptance of the oldest stromatolites from the Pilbara as biogenic (Allwood et al., 2006). This revealed that through the examination of different stromatolite morphologies and their similarities to modern microbially mediated carbonates, these formations were not purely the result of an abiogenic phenomenon. However, evidences of metabolic processes and biogeochemical cycles occurring in stromatolites are rarely preserved in these fossilised stromatolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

 References

  • Abed, R.M.M., Kohls, K. and de Beer, D. (2007) Effect of salinity changes on the bacterial diversity, photosynthesis and oxygen consumption of cyanobacterial mats from an intertidal flat of the Arabian Gulf. Environ. Microbiol. 9: 1384–1392.

    Article  PubMed  CAS  Google Scholar 

  • Allwood, A.C., Walter, M.R., Kamber, B.S., Marshall, C.P. and Burch, I.W. (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441: 714–718.

    Article  PubMed  CAS  Google Scholar 

  • Al-Qassab, S., Lee, W.J., Murray, S., Simpson, A.G.B. and Patterson, D.J. (2002) Flagellates from stromatolites and surrounding sediments in Shark Bay, Western Australia. Acta Protozool. 41: 91–144.

    Google Scholar 

  • Andres, M.S. and Reid, R.P. (2006) Growth morphologies of modern marine stromatolites: a case study from Highborne Cay, Bahamas. Sediment. Geol. 185: 319–328.

    Article  Google Scholar 

  • Arp, G., Reimer, A. and Reitner, J. (1999) Calcification in cyanobacterial biofilms of alkaline salt lakes. Eur. J. Phycol. 34: 393–403.

    Article  Google Scholar 

  • Arp, G., Reimer, A. and Reitner, J. (2001) Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science 292: 1701–1704.

    Article  PubMed  CAS  Google Scholar 

  • Arp, G., Reimer, A. and Reitner, J. (2003) Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. J. Sediment. Res. 73: 105–127.

    Article  CAS  Google Scholar 

  • Awramik, S.M. and Riding, R. (1988) Role of algal eukaryotes in subtidal columnar stromatolite formation. Proc. Natl. Acad. Sci. U.S.A. 85: 1327–1329.

    Article  PubMed  CAS  Google Scholar 

  • Baker, B.J., Kopitzke, R.W., Yoshida, W.Y. and McClintock, J.B. (1995) Chemical and ecological studies of the antarctic sponge Dendrilla membranosa. J. Nat. Prod. 58: 1459–1462.

    Article  CAS  Google Scholar 

  • Barabesi, C., Galizzi, A., Mastromei, G., Rossi, M., Tamburini, E. and Peritol, B. (2007) Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J. Bacteriol. 189: 228–235.

    Article  PubMed  CAS  Google Scholar 

  • Bauld, J., Chambers, L.A. and Skyring, G.W. (1979) Primary productivity, sulfate reduction and sulfur isotope fractionation in algal mats and sediments of Hamelin Pool, Shark Bay, W.A. Aust. J. Mar. Freshw. Res. 30: 753–764.

    Article  CAS  Google Scholar 

  • Baumgartner, L.K., Reid, R.P., Dupraz, C., Decho, A.W., Buckley, D.H., Spear, J.R., Przekop, K.M. and Visscher, P.T. (2006) Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment. Geol. 185: 131–145.

    Article  CAS  Google Scholar 

  • Benlloch, S., LĂ³pez-LĂ³pez, A., Casamayor, E.O., et al. (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ. Microbiol. 4: 349–360.

    Article  PubMed  Google Scholar 

  • Brading, M., Boyle, J. and Lappin-Scott, H. (1995) Biofilm formation in laminar flow using Pseudomonas fluorescens EX 101. J. Ind. Microbiol. 15: 297–304.

    Article  CAS  Google Scholar 

  • Burns, B.P., Goh, F., Allen, M. and Neilan, B.A. (2004) Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environ. Microbiol. 6: 1096–1101.

    Article  PubMed  CAS  Google Scholar 

  • Burns, B.P., Seifert, A., Goh, F., Pomati, F., Jungblut, A.-D., Serhat, A. and Neilan, B.A. (2005) Genetic potential for secondary metabolite production in stromatolite communities. FEMS Microbiol. Lett. 243: 293–301.

    Article  PubMed  CAS  Google Scholar 

  • Byerly, G.R., Lower, D.R. and Walsh, M.M. (1986) Stromatolites from the 3,300–3,500-Myr Swaziland supergroup, Barberton Mountain Land, South Africa. Nature 319: 489–491.

    Article  CAS  Google Scholar 

  • Canfied, D.E. and Des Marais, D.J. (1991) Aerobic sulfate reduction in microbial mats. Science 251: 1471–1473.

    Article  Google Scholar 

  • ChacĂ³n, E., Berrendero, E. and Pichel, F.G. (2006) Biogeological signatures of microboring cyanobacterial communities in marine carbonates from Cabo Rojo, Puerto Rico. Sediment. Geol. 185: 215–228.

    Article  Google Scholar 

  • Characklis, W. (1990) Process analysis, In: W. Characklis and K. Marshall (eds.) Biofilms. Wiley, New York, pp. 50–51

    Google Scholar 

  • Chen, L., Li, D. and Liu, Y. (2003) Salt tolerance of Microcoleus vaginatus Gom., a cyanobacterium isolated from desert algal crust, was enhanced by exogenous carbohydrates. J. Arid Environ. 55: 645–656.

    Article  Google Scholar 

  • Decho, A.W. (2000) Microbial biofilms in intertidal system: an overview. Cont. Shelf Res. 20: 1257–1273.

    Article  Google Scholar 

  • Decho, A.W. and Kawaguchi, T. (1999) Confocal imaging of in situ natural microbial communities and their extracellular polymeric secretions (EPS) using nanoplast resin. Biotechniques 27: 1246–1251.

    PubMed  CAS  Google Scholar 

  • Decho, A.W., Visscher, P.T. and Reid, R.P. (2005) Cycling and turnover of natural expolymers from a marine stromatolite. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219: 71–86.

    Article  Google Scholar 

  • Dupraz, C. and Visscher, P.T. (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol. 13: 429–438.

    Article  PubMed  CAS  Google Scholar 

  • Dupraz, C., Visscher, P.T., Baumgartner, K. and Reid, R.P. (2004) Microbe–mineral interactions: early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51: 745–765.

    Article  CAS  Google Scholar 

  • Foster, J.S., Green, S.J., Ahrendt, S.R., Golubic, S., Reid, R.P., Hetherington, K.L. and Bebout, L. (2009) Molecular and morphological characterization of cyanobacterial diversity in the stromatolites of Highborne Cay, Bahamas. ISME J. 3: 573–587.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pichel, F. (2006) Plausible mechanisms for the boring on carbonates by microbial phototrophs. Sediment. Geol. 185: 205–213.

    Article  Google Scholar 

  • Garcia-Pichel, F., Nubel, U. and Muyzer, G. (1998) The phylogeny of unicellular, extremely halotolerant cyanobacteria. Arch Microbiol. 169: 469–482.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Pichel, F., Kuhl, M., Nubel, U. and Muyzer, G. (1999) Salinity-dependent limitation of photosynthesis and oxygen exchange in microbial mats. J. Phycol. 35: 227–238.

    Article  Google Scholar 

  • Goh, F., Leuko, S., Allen, M.A., Bowman, J.P., Kamekura, M., Neilan, B.A. and Burns, B.P. (2006) Halococcus hamelinensis sp. nov., a novel halophilic archaeon isolated from stromatolites in Shark Bay, Australia. Int. J. Syst. Evol. Microbiol. 56: 1323–1329.

    Article  PubMed  CAS  Google Scholar 

  • Goh, F., Allen, M.A., Leuko, S., Kawaguchi, T., Decho, A.W., Burns, B.P., Neilan, B.A (2009) Determining the specific microbial populations and their spatial distribution within the stromatolite ecosystem of Shark Bay. ISME J. 3: 383–396.

    Article  PubMed  CAS  Google Scholar 

  • Grotzinger, J.P. and Knoll, A.H. (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu. Rev. Earth. Planet Sci. 27: 313–358.

    Article  PubMed  CAS  Google Scholar 

  • Javor, B.J. (1988) CO2 fixation in halobacteria. Arch. Microbiol. 149: 433–440.

    Article  CAS  Google Scholar 

  • Jørgensen, B.B. (2001) Space for hydrogen. Nature 412: 286–289.

    Article  PubMed  Google Scholar 

  • Jungblut, A.-D., Hawes, I., Mountfort, D., Hitzfeld, B., Dietrich, D.R., Burns, B.P. and Neilan, B.A. (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ. Microbiol. 7: 519–529.

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi, T. and Decho, A.W. (2002) A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. J. Cryst. Growth 240: 230–235.

    Article  CAS  Google Scholar 

  • Leslie, S., Israeli, E., Lighthart, B., Crowe, J. and Crowe, L. (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl. Environ. Microbiol. 61: 3592–3597.

    PubMed  CAS  Google Scholar 

  • Lewin, R.A. (2006) Black algae. J. Appl. Phys. 18: 699–702.

    Google Scholar 

  • Ley, R.E., Harris, J.K., Wilcox, J., Spear, J.R., Miller, S.R., Bebout, B.M., Maresca, J.A., Bryant, D.A., Sogin, M.L. and Pace, N.R. (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl. Environ. Microbiol. 72: 3685–3695.

    Article  PubMed  CAS  Google Scholar 

  • Logan, B.W. and Cebulski, D.E. (1970) Sedimentary environments of Shark Bay, Western Australia, In: B.W. Logan, G.R. Davies, J.F. Read and D.E. Cebulski (eds.) Carbonate Sedimentation and Environments, Shark Bay, Western Australia. American Association of Petroleum Geologists, Tulsa, Okla, pp. 1–37.

    Google Scholar 

  • Lowe, D.R. (1980) Stromatolites 3,400-Myr old from the Archean of Western Australia. Nature 284: 441–443.

    Article  Google Scholar 

  • Macintyre, I.G., Prufert-Bebout, L. and Reid, R.P. (2000) The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamian Stromalites. Sedimentology 47: 915–921.

    Article  Google Scholar 

  • Mattimore, V. and Battista, J.R. (1996) Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J. Bacteriol. 178: 633–637.

    PubMed  CAS  Google Scholar 

  • McNamara, K.J. and Awramik, S.M. (1992) Stromatolites: a key to understanding the early evolution of life. Sci. Prog. 76: 345–364.

    Google Scholar 

  • Michaelis, W., Seifert, R., Nauhaus, K., et al. (2002) Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane. Science 297: 1013–1015.

    Article  PubMed  CAS  Google Scholar 

  • Neilan, B.A., Burns, B.P., Relman, D. and Lowe, D.R. (2002) Molecular identification of cyanobacteria associated with stromatolites from distinct geographical locations. Astrobiology 2: 271–280.

    Article  PubMed  CAS  Google Scholar 

  • NĂ¼bel, U., Garcia-Pichel, F., Clavero, E. and Muyzer, G. (2000) Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient. Environ. Microbiol. 2: 217–226.

    Article  PubMed  Google Scholar 

  • Paerl, H.W., Pinckney, J.L. and Steppe, T.F. (2000) Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ. Microbiol. 2: 11–26.

    Article  PubMed  CAS  Google Scholar 

  • Paerl, H.W., Steppe, T.F. and Reid, R.P. (2001) Bacterially mediated precipitation in marine stromatolites. Environ. Microbiol. 3: 123–130.

    Article  PubMed  CAS  Google Scholar 

  • Palmisano, A.C., Summons, R.E. and Cronin, S.E. (1989) Lipophilic pigments from cyanobacterial (blue-green algal) and diatom mats in Hamelin Pool, Shark Bay, Western Australia. J. Phycol. 25: 655–661.

    Article  PubMed  CAS  Google Scholar 

  • Papineau, D., Walker, J.J., Mojzsis, S.J. and Pace, N.R. (2005) Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl. Environ. Microbiol. 71: 4822–4832.

    Article  PubMed  CAS  Google Scholar 

  • Petrisor, A.I. and Decho, A.W. (2004) Using geographical information techniques to quantify the spatial structure of endolithic boring processes within sediment grain of marine stromatolites. J. Microbiol. Methods 56: 173–180.

    Article  PubMed  Google Scholar 

  • Pinckney, J., Paerl, H.W., Reid, R.P. and Bebout, B.M (1995) Ecophysiology of stromatolite mats, Stocking Island, Exuma Cays, Bahamas. Microb. Ecol. 29: 19–37.

    Article  Google Scholar 

  • Playford, P.E. and Cockbain, A.E. (1976) Modern algal stromatolites at Hamelin Pool, a hypersaline barred basin in Shark Bay, Western Australia, In: M.R. Walter (ed.) Stromatolites. Elsevier, Amsterdam, pp. 101.

    Google Scholar 

  • Reid, R.P., Visscher, P.T., Decho, A.W., et al. (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406: 989–992.

    Article  PubMed  CAS  Google Scholar 

  • Revsbech, N.P., Jørgensen, B.B., Blackburn, T.H. and Cohen, Y. (1983) Microelectrode studies of the photosynthesis, O2, H2S and pH profiles of a microbial mat. Limnol. Oceanogr. 28: 1062–1074.

    Article  Google Scholar 

  • Robertson, C.E., Spear, J.R., Harris, K.J. and Pace, N.R. (2009) Diversity and stratification of archaea in a hypersaline microbial mat. Appl. Environ. Microbiol. 75: 1801–1810.

    Article  PubMed  CAS  Google Scholar 

  • Rothschild, L.J. and Mancinelli, R.L. (2001) Life in extreme environments. Nature 409: 1092–1101.

    Article  PubMed  CAS  Google Scholar 

  • Sakugawa, H., Handa, N. and Yagi, K. (1990) Distribution of glycosylglycerols and oligosaccharides in the marine environment and their ecoloigcal significance in the deep sea. Mar. Biol. 106: 309–313.

    Article  CAS  Google Scholar 

  • Schopf, J.W., Kuryavtsev, A.B., Agresti, D.G., Wdowiak, T.J. and Czaja, A.D. (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416: 73–76.

    Article  PubMed  CAS  Google Scholar 

  • Stal, L.J. and Reed, R.H. (1987) Low-molecular mass carbohydrate accumulation in cyanobacteria from a marine microbial mat in response to salt. FEMS Microbiol. Ecol. 45: 305–312.

    Article  CAS  Google Scholar 

  • Steppe, T.F., Pinckney, J.L., Dyble, J. and Paerl, H.W. (2001) Diazotrophy in modern marine Bahamian stromatolites. Microb. Ecol. 41: 36–44.

    PubMed  CAS  Google Scholar 

  • Summons, R.E., Jahnke, L.L., Logan, G.A. and Hope, J.M. (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 398: 554–557.

    Article  Google Scholar 

  • Uhlinger, D.J. and White, D.C. (1983) Relationship between physiological status and formation of extracellular polysaccharide glycocalyx in Pseudomonas altantica. Appl. Environ. Microbiol. 45: 64–70.

    PubMed  CAS  Google Scholar 

  • Visscher, P.T. (2000) Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 28: 919–922.

    Article  CAS  Google Scholar 

  • Visscher, P.T., Reid, R.P., Bebout, B.M., Hoeft, S.E., Macintyre, I.G. and Junior, J.A.T. (1998) Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): the role of sulfur cycling. Am. Mineral. 83: 1482–1493.

    CAS  Google Scholar 

  • Visscher, P.T., Gritzer, R.F. and Leadbetter, E.R. (1999) Low-molecular-weight sulfonates, a major substrate for sulfate reducers in marine microbial mats. Appl. Environ. Microbiol. 65: 3272–3278.

    PubMed  CAS  Google Scholar 

  • Walter, M.R., Buick, R. and Dunlop, J.S.R. (1980) Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature 284: 443–445.

    Article  Google Scholar 

  • Warr, S.R.C., Reed, R.H. and Stewart, W.D.P. (1985) Carbohydrate accumulation in osmotically stressed cyanobacteria (blue-green algae): interactions of temperature and salinity. New Phytol. 100: 285–292.

    Article  CAS  Google Scholar 

  • Wieland, A. and Kuhl, M. (2006) Regulation of photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat (Camargue, France) by irradiance, temperature and salinity. FEMS Microbiol. Ecol. 55: 195–210.

    Article  PubMed  CAS  Google Scholar 

Download references

 Acknowledgements

The author acknowledges and thanks the following people: the editors Professor Vinod C. Tewari and Professor Joseph Seckbach for invitation to contribute in this book volume and much of the coordination and administration of the publication and the two anonymous referees for their suggestions and comments towards the improvement of this book chapter. Finally, the author thanks both Professor Brett Neilan and Dr. Brendan Burns for their guidance, suggestion, and advice throughout this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falicia Goh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Goh, F. (2011). Living Stromatolites of Shark Bay, Western Australia: Microbial Inhabitants. In: Tewari, V., Seckbach, J. (eds) STROMATOLITES: Interaction of Microbes with Sediments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0397-1_15

Download citation

Publish with us

Policies and ethics