Skip to main content

Describing and Locating Cropping Systems on a Regional Scale

  • Chapter
  • First Online:
Sustainable Agriculture Volume 2

Abstract

At regional scale issues such as diffuse pollution, water scarcity and pollen transfer are closely related to the diversity and location of cropping systems because agriculture interacts with many other activities. Although sustainable land use solutions for territorial development and natural resource management are needed, very few agro-environmental studies account for both the coherence and the spatial variability of cropping systems. The originality of this article is to review methods that describe and locate cropping systems within large areas. We mainly based our analysis on four case studies using the concept of cropping systems on a regional scale, but differing in their objectives and extents. We found that describing and locating cropping systems in space meets not only decision- making stakes but also a scientific stake that allows multi-simulations over large areas when models require cropping system information. Simulation models are indeed necessary when the study aims at estimating cropping system externalities. Then, the involved process determines the extent, and the model determines the support unit, unless socio-economic considerations prevail. In this case, as well as when no model is involved, it is often considerations related to stakeholders that determine extent and support unit choices. On a regional scale, the cropping system must be described by only a few variables whose selection depends on the study objective and the involved processes. Collecting cropping system information for all support units is often simplified by identifying determining factors of cropping systems. However, obtaining deterministic relations between easily accessible factors and cropping system variables is not always possible, and sometime accessing modalities of determining factors for all support units is also difficult. We found that describing and locating cropping systems relied very much on expertise and detailed survey data. The development of land management practice monitoring would facilitate this description work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use here the word “region” to refer to any area so large or heterogeneous that it includes a great number of fields impossible to survey. In this article, a “region” could be a small area of less than 10 km2 with many small fields, as well as a very big river catchment ( ∼ 100 000 km2).

  2. 2.

    Service Central d’Études Économiques et Statistiques

References

  • Angevin F., Colbach N., Meynard J.M., Roturier C. (2002) Analysis of necessary adjustements of farming practices, in: Bock A.K., Lheureux K., Libeau-Dulos M., Nilsagard H., Rodriguez-Cerezo E. (Eds.), Scenarios for co-existence of genetically modified, conventional and organic crops in European agriculture. Technical Report Series of the Joint Research Center of the European Commission, EUR 20394 EN, http://ipts.jrc.ec.europa.eu/publications/pub.cfm?id=1044.

  • Angevin F., Klein E.K., Choimet C., Gauffreteau A., Lavigne C., Messean A., Meynard J.M. (2008) Modelling the impacts of cropping systems and climate on maize cross-pollination in agricultural landscapes: The MAPOD model, Eur. J. Agron. 28, 471–484.

    Article  Google Scholar 

  • Barson M., Lesslie R. (2004) Land management practices – why they are important and how we know this, in: National workshop on Land Management Practices: Information Priorities, Classification and Mapping, Canberra, pp. 1–9.

    Google Scholar 

  • Beaujouan V., Durand P., Ruiz. L. (2001) Modelling the effect of the spatial distribution of agricultural practices on nitrogen fluxes in rural catchments, Ecol. Model. 137, 93–105.

    Article  CAS  Google Scholar 

  • Benoît M., Papy F. (1998) La place de l’agronomie dans la problématique environnementale, Dossier de l’environnement de l’INRA 17, 53–62.

    Google Scholar 

  • Biarnès A., Colin F. (2006) Methodology for assessing the hydrological impact of weed control practices with a view to management of Mediterranean vine growing catchments, Int. J. Sust. Dev. World 9, 161–179.

    Article  Google Scholar 

  • Biarnès A., Rio P., Hocheux A. (2004) Analyzing the determinants of spatial distribution of weed control practices in a Languedoc vineyard catchment, Agronomie 24, 187–196.

    Article  Google Scholar 

  • Bierkens M.F.P., Finke P.A., de Willigen P. (2000) Upscaling and downscaling methods for environmental research, Kluwer Academic Publishers.

    Google Scholar 

  • BRS (2006) Guidelines for land use mapping in Australia: principles, procedures and definitions. A technical handbook supporting the Australian Collaborative Land Use Mapping Programme, Edition 3, Australian Government, Bureau of Rural Sciences, Canberra.

    Google Scholar 

  • Chipanshi A.C., Ripley E.A., Lawford R.G. (1999) Large-scale simulation of wheat yields in a semi-arid environment using a crop-growth model, Agr. Syst. 59, 57–66.

    Google Scholar 

  • Clavel L., Leenhardt D. (2008) Development of matrices to build scenarios of cropping systems distribution for integrated catchment assessment. A proposition for an irrigated area in south-western France, in: Sànchez-Marrè M., Béjar J., Comas J., Rizzoli A., Guariso G. (Eds.), Integrating Sciences and Information Technology for Environmental Assessment and Decision Making, iEMSs 2008: International Congress on Environmental Modelling and Software, 4th Biennial Meeting of iEMSs, pp. 678–685.

    Google Scholar 

  • Colbach N. (2008) How to model and simulate the effects of cropping systems on population dynamics and gene flow at the landscape level, Example of oilseed rape volunteers and their role for co-existence of GM and non-GM crops, submitted to Environ. Sci. Pollut. R.

    Google Scholar 

  • Donet I. (1999) Étude sur l’interpolation de l’ETP quotidienne en points de grille. Report SCEM/SERV/AGRO, Météo-France, Toulouse.

    Google Scholar 

  • Dunning J.B., Stewart D.J., Danielson B.J., Noon B.N., Root T.L., Lamberson R.H., Stevens E.E. (1995) Spatially explicit population models: current form and future uses, Ecol. Appl. 5, 3–11

    Google Scholar 

  • Faivre R., Bastié C., Husson, A. (2000) Integration of VEGETATION and HRVIR into yield estimation approach, in: Gilbert Saint (Ed.), Proceedings of “Vegetation 2000, 2 years of operation to prepare the future”, Space Application Institute and Joint Reasearch Center, Ispra, Lake Maggiore (Italy), pp. 235–240.

    Google Scholar 

  • Faivre R., Leenhardt D., Voltz M., Benoît M., Papy F., Dedieu G., Wallach D. (2004) Spatialising crop models, Agronomie 24, 205–217.

    Article  Google Scholar 

  • Gomez E., Ledoux E. (2001) Démarche de modélisation de la dynamique de l’azote dans les sols et de son transfert vers les aquifères et les eaux de surface, C.R. Acad. Agric. Fr. 87, 111–120.

    CAS  Google Scholar 

  • Hartkamp A.D., White J.W., Rossing W.A.H., van Ittersum M.K., Bakker E.J., Rabbinge R. (2004) Regional application of a cropping systems simulation model: crop residue retention in maize production systems of Jalisco, Mexico, Agr. Syst. 82, 117–138.

    Google Scholar 

  • Heinemann A.B., Hoogenboom G., Faria de R.T. (2002) Determination of spatial water requirements at county and regional levels using crop models and GIS. An example for the State of Parana, Brazil, Agr. Water Manage. 52, 177–196.

    Article  Google Scholar 

  • IPCC (2007) Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, in: Metz B., Davidson O.R., Bosch P.R., Dave R., Meyer L.A. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 851 p.

    Google Scholar 

  • Jouve P. (2006) La dimension spatiale des systèmes de culture: comparaison entre agriculture tempérée et agriculture tropicale, Cah. Agric. 15, 255–260.

    Google Scholar 

  • de Juan J.A., Tarjuelo J.M., Ortega J.F., Valiente M., Carrion P. (1999) Management of water consumption in agriculture: A model for the economic optimisation of water use: application to a sub-humid area, Agr. Water Manage. 40, 303–313.

    Article  Google Scholar 

  • Lal H., Hoogenboom G., Calixte J.P., Jones J.W., Beinroth F.H. (1993) Using crop simulation models and GIS for regional productivity analysis, T. ASAE 36, 175–184.

    Google Scholar 

  • Lançon J., Reau R., Cariolle M., Munier-Jolain N., Omon B., Petit M.S., Viaux P., Wery J. (2008) Élaboration à dire d’experts de systèmes de culture innovants, in: Reau R., Doré T. (Eds.), Systèmes de culture innovants et durables : quelles méthodes pour les mettre au point et les évaluer ? Educagri éd., Dijon, pp. 91–107.

    Google Scholar 

  • Launay M., Guérif M. (2005) Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications, Agr. Ecosyst. Environ. 321–339.

    Google Scholar 

  • Le Bail M. (2005) Le bassin d’approvisionnement : territoire de la gestion agronomique de la qualité des productions végétales, in: Prevost P. (Ed.), Agronomes et territoires : Deuxième édition des entretiens du Pradel, L’Harmattan, Paris, pp. 213–228.

    Google Scholar 

  • Le Ber F., Benoît M., Schott C., Mari J.F., Mignolet C. (2006) Studying crop sequences with CARROTAGE, a HMM-based data mining software, Ecol. Model. 191, 170–185.

    Article  Google Scholar 

  • Ledoux E., Gomez E., Monget J.M., Viavattene C., Viennot P., Ducharne A., Benoit M., Mignolet C., Schott C., Mary B. (2007) Agriculture and groundwater nitrate contamination in the Seine basin. The STICS-MODCOU modelling chain, Sci. Total Environ. 375, 33–47.

    Article  CAS  Google Scholar 

  • Leenhardt D., Trouvat J.L., Gonzalès G., Pérarnaud V., Prats S., Bergez J.E. (2004) Estimating irrigation demand for water management on a regional scale. I. ADEAUMIS, a simulation platform based on biodecisionnal modelling and spatial information, Agr. Water Manage. 68, 207–232.

    Article  Google Scholar 

  • Leenhardt D., Wallach D., Le Moigne P., Guérif M., Bruand A., Casterad M.A. (2006) Using crop models for multiple fields, in: Wallach D., Jones J., Makowski D. (Eds.), Working with crop models, Elsevier, pp. 209–248

    Google Scholar 

  • Leteinturier B., Herman J.L., Longueville F.d., Quintin L., Oger R. (2006) Adaptation of a crop sequence indicator based on a land parcel management system, Agr. Ecosyst. Environ. 112, 324–334.

    Google Scholar 

  • Louchart X., Voltz M., Andrieux P., Moussa R. (2001) Herbicide Transport to Surface Waters at Field and Watershed Scales in a Mediterranean Vineyard Area, J. Environ. Qual. 30, 982–991.

    Article  PubMed  CAS  Google Scholar 

  • Mari J.F., Le Ber F. (2005) Temporal and spatial data mining with second-order hidden markov models, Soft Computing – A Fusion of Foundations, Methodologies and Applications, 406–414.

    Google Scholar 

  • Martin P., Joannon A., Mignolet C., Souchère V., Thenail C. (2006) Systèmes de culture et territoires : cas des questions environnementales, in: Doré T., Le Bail M., Martin P., Ney B., Roger-Estrade J. (Eds.), L’agronomie aujourd’hui. Coll. Quae, Versailles.

    Google Scholar 

  • Maton L. (2006) Représentation et simulation des pratiques culturales des agriculteurs à l’échelle régionale pour estimer la demande en eau d’irrigation. Application à un bassin versant maïsicole du sud-ouest de la France, PhD thesis, INPT, Toulouse.

    Google Scholar 

  • Maton L., Bergez J.E., Leenhardt D. (2007a) Modelling the days which are agronomically suitable for sowing, Eur. J. Agron. 27, 123–129.

    Article  Google Scholar 

  • Maton L., Leenhardt D., Bergez J.E. (2007b) Geo-referenced indicators of maize sowing and cultivar choice for better water management, Agron. Sustain. Dev. 27, 377–386.

    Article  Google Scholar 

  • Meynard J.M., Doré T., Habib R. (2001) L’évaluation et la conception de systèmes de culture pour une agriculture durable, C.R. Acad. Agric. Fr. 87, 223–236.

    Google Scholar 

  • Mignolet C., Bornerand C., Benoît M. (2001) Dynamique spatiale et temporelle de l’activité agricole dans le bassin de la Seine au cours des trente dernières années, C.R. Acad. Agric. Fr. 87, 99–109.

    Google Scholar 

  • Mignolet C., Schott C., Benoît M. (2004) Spatial dynamics of agricultural practices on a basin territory: a retrospective study to implement models simulating nitrate flow. The case of the Seine basin, Agronomie 24, 219–236.

    Google Scholar 

  • Mignolet C., Schott C., Benoit M. (2007) Spatial dynamics of farming practices in the Seine basin: Methods for agronomic approaches on a regional scale, Sci. Total Environ. 375, 13–32.

    Article  CAS  Google Scholar 

  • Moen T.N., Kaiser H.M., Riha S.J. (1994) Regional yield estimation using a crop simulation model: concepts, methods and validation, Agr. Syst. 46, 79–92.

    Google Scholar 

  • Nordblom T., Hume I., Bathgate A., Reynolds M. (2006) Mathematical optimisation of drainage and economic land use for target water and salt yields, Aust. J. Agr. Resour. Ec. 50, 381–402.

    Article  Google Scholar 

  • Reca J., Roldan J., Alcaide M., Lopez R., Camacho E. (2001) Optimisation model for water allocation in deficit irrigation systems: I. Description of the model, Agr. Water Manage. 48, 103–116.

    Article  Google Scholar 

  • Rosenthal W.D., Hammer G.L., Butler D. (1998) Predicting regional grain sorghum production in Australia using spatial data and crop simulation modelling, Agr. Forest. Meteorol. 91, 263–274.

    Article  Google Scholar 

  • Rounsevell M.D.A., Annetts J.E., Audsley E., Mayr T., Reginster I. (2003) Modelling the spatial distribution of agricultural land use at the regional scale, Agr. Ecosyst. Environ. 95, 465–479.

    Article  Google Scholar 

  • Sebillotte M. (1974) Agronomie et agriculture. Essai d’analyse des tâches de l’agronome, Cah. ORSTOM 24, 3–25.

    Google Scholar 

  • Sousa V. Santos Pereira L. (1999) Regional analysis of irrigation water requirements using kriging. Application to potato crop (Solanum tuberosum L.) at Tras-os-Montes, Agr. Water Manage. 40, 221–233.

    Article  Google Scholar 

  • Stomph T.J., Fresco L.O., Van Keulen H. (1994) Land use system evaluation: Concepts and methodology, Agr. Syst. 44, 243–255.

    Google Scholar 

  • Stoorvogel J.J. (1995) Integration of computer-based models and tools to evaluate alternative land-use scenarios as part of an agricultural system analysis, Agr. Syst. 49, 353–367.

    Google Scholar 

  • Veldkamp A., Kok K., de Koning G.H.J., Schoorl J.M., Sonneveld M.P.W., Verburg P.H. (2001) Multi-scale system approaches in agronomic research at the landscape level, Soil Till. Res. 58, 129–140.

    Google Scholar 

  • Verburg P.H., Soepboer W., Veldkamp A., Limpiada R., Espaldon V., Mastura S.S.A. (2002) Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model, Environ. Manage. 30, 391–405.

    Google Scholar 

  • Verburg P.H., Veldkamp A. (2001) The role of spatially explicit models in land-use change research: a case study for cropping patterns in China, Agr. Ecosyst. Environ. 85, 177–190.

    Article  Google Scholar 

  • Yun J.I. (2003) Predicting regional rice production in South Korea using spatial data and crop-growth modelling, Agr. Syst. 77, 23–38.

    Google Scholar 

  • Zimmermann A, Heckelei T., Pérez I. (2006) Working paper – Literature Review of Approaches to Estimate Structural Change, SEAMLESS Report No.16, SEAMLESS integrated project, EU 6th Framework Programme, contract No. 010036-2, http://www.SEAMLESS-IP.org, 45 p.

Download references

Acknowledgements

The authors are grateful to Drs. V. Souchère, C. Thenail and B. Nicoullaud, and to the anonymous reviewers for their valuable comments, recommendations and corrections. We would like to thank M. R. Lesslie and D. Wallach for editorial advice in English. This study was conducted within the framework of the Cropping System network of the Environment and Agronomy Department of the French National Institute for Agronomical research (INRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delphine Leenhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Leenhardt, D., Angevin, F., Biarnès, A., Colbach, N., Mignolet, C. (2011). Describing and Locating Cropping Systems on a Regional Scale. In: Lichtfouse, E., Hamelin, M., Navarrete, M., Debaeke, P. (eds) Sustainable Agriculture Volume 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0394-0_6

Download citation

Publish with us

Policies and ethics