Skip to main content

Nitrogen Rhizodeposition of Legumes

  • Chapter
  • First Online:

Abstract

Because nitrogen is one of the major elements limiting growth of plants in agrosystems, large amounts of N fertilisers have been used in the second half of the twentieth century. Chemical fertilisers have contributed to increasing crop yields and food supply, but they have induced environmental damage such as nitrate pollution and wasting fossil fuel. The use of legumes grown in rotations or intercropping is now regarded as an alternative and sustainable way of introducing N into lower input agrosystems. Here we review agricultural practices, measurement methods and biological pathways involved in N cycling. We show that plant roots interact intimately with soil microflora to convert the most abundant but relatively inert form of N, atmospheric N2, into biological substrates available for growth of other plants, through two consecutive processes; namely, N2 fixation and N rhizodeposition. In intercropping, companion plants benefit from biological fixation by legumes and subsequent transfer of N from legumes to non-legumes. This transfer from legumes to the release of N compounds by legume roots, a process named rhizodeposition, then the uptake by the companion crop. The two main rhizodeposition pathways are (i) decomposition and decay of nodules and root cells, and (ii) exudation of soluble N compounds by plant roots. The contribution of root N and rhizodeposited N to the soil-N pool is difficult to measure, particularly in the field. Firstly, root N is often underestimated because root recovery is problematic. Second, assessment of N rhizodeposition is challenging. Several 15N labelling methods have been performed for different legume species. Rhizodeposition of N, as a percentage of total plant N, varied from 4 to 71%. The high variability of the results illustrates the need for more studies of the environmental and genetic factors influencing the amount of N rhizodeposits released by legumes under field conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ayres E., Dromph K.M., Cook R., Ostle N., Bardgett R.D. (2007) The influence of below-ground herbivory and defoliation of a legume on nitrogen transfer to neighbouring plants, Funct. Ecol. 21, 256–263.

    Google Scholar 

  • Bais H.P., Weir T.L., Perry L.G., Gilroy S., Vivanco J.M. (2006) The role of root exudates in rhizosphere interactions with plants and other organisms, Ann. Rev. Plant Biol. 57, 233–266.

    Article  CAS  Google Scholar 

  • Bardgett R.D., Denton C.S., Cook R. (1999) Below ground herbivory promotes soil nutrient transfer and root growth in grassland, Ecol. Lett. 2, 357–360.

    Google Scholar 

  • Bazot S., Blum H., Robin C. (2008) Nitrogen rhizodeposition assessed by a 15NH3 shoot pulse-labelling of Lolium perenne L. grown on soil exposed to 9 years of CO2 enrichment, Environ. Exp. Bot. 63, 410–415.

    Article  CAS  Google Scholar 

  • Bergersen F.J., Brockwell J., Gault R.R., Morthorpe L., Peoples M.B., Turner G.L. (1989) Effects of available soil nitrogen and rates of inoculation on nitrogen fixation by irrigated soybeans and evaluation of δ15N methods for measurements, Aust. J. Agr. Resour. Ec. 40, 763–780.

    Article  Google Scholar 

  • Brophy L.S., Heichel G.H. (1989) Nitrogen release from roots of alfalfa and soybean grown in sand culture, Plant Soil 116, 77–84.

    Article  CAS  Google Scholar 

  • Burris R.H. (1974) Biological nitrogen fixation, Plant Physiol. 54, 443–449.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson G., Huss-Danell K. (2003) Nitrogen fixation in perennial forage legumes in the field, Plant Soil 253, 353–372.

    Article  CAS  Google Scholar 

  • Chapman A.L., Myers R.J.K. (1987) Nitrogen contribution by grain legumes to rice grown in rotation on the Cununurra soils the Ord irrigation area, Western Australia, Aust. J. Agr. Resour. Ec. 48, 1139–1150.

    Google Scholar 

  • Chalk P.M. (1998) Dynamics of biologically fixed N in legume-cereal rotations: a review, Aust. J. Agr. Resour. Ec. 49, 303–316.

    Article  CAS  Google Scholar 

  • Chalk P.P., Ladha J.K., Padre A. (2002) Efficacy of three 15N labelling techniques for estimating below ground N in Sesbania rostrata, Biol. Fert. Soils 35, 387–398.

    Article  CAS  Google Scholar 

  • Corre-Hellou G., Fustec J., Crozat Y. (2006) Interspecific competition for soil N and its interaction with N2 fixation, leaf expansion and crop growth in pea-barley intercrops, Plant Soil 282, 195–208.

    Article  CAS  Google Scholar 

  • Corre-Hellou G., Brisson N., Launay M., Fustec J., Crozat Y. (2007) Effect of root depth penetration on soil N sharing and dry matter in pea-barley intercrops given different soil N supplies, Field Crop. Res. 103, 76–85.

    Google Scholar 

  • Crawford M.C., Grace P.R., Bellotti W.D., Oades J.M. (1997) Root production of a barrel medic (Medicago truncatula) pasture, a barley grass (Hordeum leporinum) pasture, and a fababean (Vicia faba) crop in Southern Australia, Aust. J. Agr. Resour. Ec. 48, 1139–1150.

    Article  Google Scholar 

  • Crépon K. (2006) Protein supply in Europe and the challenge to increase grain legumes production: a contribution to sustainable agriculture, in: Grain legumes and the environment: how to assess benefits and impacts. Proceedings of the AEP workshop, (Ed.) AEP, 18–19 November 2004, Zürich, Switzerland, pp. 13–16.

    Google Scholar 

  • Crozat Y., Fustec J. (2006) Assessing the role of grain legumes in crop rotation: some agronomic concepts that can help!, in: Grain legumes and the environment: how to assess benefits and impacts. Proceedings of the AEP workshop, (Ed.) AEP, 18–19 November 2004, Zürich, Switzerland, pp. 55–60.

    Google Scholar 

  • Curatti L., Ludden P.W., Rubio L.M. (2006) NifB-dependent in vitro synthesis of the iron-molybdenum cofactor of nitrogenase, PNAS 103, 5297–5301

    Article  PubMed  CAS  Google Scholar 

  • Dalal R.C., Strong W.M., Doughton J.A., Weston E.J., McNamara G.T., Cooper J.R. (1997) Sustaining productivity of a vertisol at warra, Queensland, with fertilizer, no-tillage or legumes. 4. Nitrogen fixation, water use and yield of chickpea, Aust. J. Exp. Agr. 37, 667–676.

    Article  Google Scholar 

  • Deutsch B., Kahle P., Voss M. (2006) Assessing the source of nitrate pollution in water using stable N and O isotopes, Agron. Sustain. Dev. 26, 263–267.

    Article  CAS  Google Scholar 

  • Dubach M., Russelle M.P. (1994) Forage legume roots and nodules and their role in nitrogen transfer, Agron. J. 86, 259–266.

    Google Scholar 

  • Frame J., Charlton J.F.L., Laidlaw A.S. (1998) Temperate forage legumes, CAB International, Wallingford, UK, 327 p.

    Google Scholar 

  • Fujita K., Ofosu-Budu K.G., Ogata S. (1992) Biological nitrogen fixation in mixed legume-cereal cropping systems, Plant Soil 141, 155–175.

    Article  CAS  Google Scholar 

  • Garg N., Geetanjali (2007) Symbiotic nitrogen fixation in legume nodules: process and signaling. A review, Agron. Sustain. Dev. 27, 59–68.

    Google Scholar 

  • Giller K.E., Ormesher J., Awah F.M. (1991) Nitrogen transfer from Phaseolus bean to intercropped maize measured using 15N-enrichment and 15N-isotope dilution methods, Soil Biol. Biochem. 23, 339–346.

    CAS  Google Scholar 

  • Gordon A.J., Lea P.J., Rosenberg C., Trinchant J.C. (2001) Nodule formation and function, in: Lea P.J., Morot-Gaudry J.F. (Eds.), Springer-Verlag Plant nitrogen, Berlin Heidelberg New York, pp. 101–146.

    Google Scholar 

  • Gylfadóttir T., Helgadóttir A., Høgh-Jensen H. (2007) Consequences of including adapted white clover in northern European grassland: transfer and deposition of nitrogen, Plant Soil 297, 93–104.

    Article  Google Scholar 

  • Hansson A.C., Steen E. (1984) Methods of calculating root production and nitrogen uptake in an annual crop, Swedish J. Agr. Res. 14, 191–200.

    Google Scholar 

  • Hartwig U.A. (1998) The regulation of symbiotic N2 fixation: a conceptual model of N feedback from the novel ecosystem to the gene expression level, Perspect. Plant Ecol. Evol. Syst. 1/1, 92–120.

    Google Scholar 

  • Hauggaard-Nielsen H., Jensen E.S. (2005) Facilitative root interactions in intercrops, Plant Soil 274, 237–250.

    Article  CAS  Google Scholar 

  • Hertenbergen G., Wanek W. (2004) Evaluation of methods to measure differential 15N labeling of soil and root-N pools for studies of root exudation, RCM 18, 2415–2425.

    Google Scholar 

  • Hétier J.M., Andreux F., Schouller E., Marol C. (1986) Organic matter inputs after growth of Carbon 14-Nitrogen labeled maize, Soil Sci. Soc. Am. J. 50, 76–80.

    Google Scholar 

  • Høgh-Jensen H. (2006) The nitrogen transfer between plants: An important but difficult flux to quantify, Plant Soil 282, 1–5.

    Article  Google Scholar 

  • Høgh-Jensen H., Schjoerring J.K. (1997) Interaction between white clover and ryegrass under contrasting nitrogen availability: N2 fixation, N fertilizer recovery, N transfer and water-use efficiency, Plant Soil 197, 187–199.

    Google Scholar 

  • Høgh-Jensen H., Schjoerring J.K. (2001) Rhizodeposition of nitrogen by red clover, white clover and ryegrass leys, Soil. Biol. Biochem. 33, 439–448.

    Article  Google Scholar 

  • Janzen H.H., Bruinsma Y. (1989) Methodology for the quantification of root and rhizosphere N dynamics, Soil. Biol. Biochem. 21, 189–196.

    Article  CAS  Google Scholar 

  • Jensen E.S. (1996a) Rhizodeposition of N by pea and barley and its effect on soil N dynamics, Soil. Biol. Biochem. 28, 65–71.

    Article  CAS  Google Scholar 

  • Jensen E.S. (1996b) Barley uptake of N deposited in the rhizosphere of associated field pea, Soil. Biol. Biochem. 28, 159–168.

    Article  CAS  Google Scholar 

  • Jensen E.S. (2006) Grain legume functions in crop rotations, in: Grain legumes and the environment: how to assess benefits and impacts. Proceedings of the AEP workshop, (Ed.) AEP, 18–19 November 2004, Zürich, Switzerland, pp. 49–54.

    Google Scholar 

  • Johansen A., Jensen E.S. (1996) Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorhizal fungus, Soil Biol. Biochem. 28, 73–81.

    CAS  Google Scholar 

  • Jones D.L., Healey J.R., Willett V.B., Farrar J.F., Hodge A. (2005) Dissolved organic nitrogen uptake by plants, an important N uptake pathway? Soil Biol Biochem 37, 413–423.

    Article  CAS  Google Scholar 

  • Khan D.F., Peoples M.B., Chalk P.M., Herridge D.F. (2002a) Quantifying below-ground nitrogen of legumes. 2. A comparison of 15N and non isotopic methods, Plant Soil 239, 277–289.

    Article  CAS  Google Scholar 

  • Khan D.F., Peoples M.B., Herridge D.F. (2002b) Quantifying below ground nitrogen of legumes. 1. Optimising procedures for 15N shoot-labelling, Plant Soil 245, 327–334.

    Article  CAS  Google Scholar 

  • Khan D.F., Herridge D.F., Peoples M.B., Shah S.H., Khan T., Madani M.S., Ibrar M. (2007) Use of isotopic and non-isotopic techniques to quantify below-ground nitrogen in fababean and chickpea, Soil Environ. 26, 42–47.

    Google Scholar 

  • Kielland K. (1995) Landscape patterns of free amino acids in Arctic tundra soils, Biogeochemistry 31, 85–98.

    Article  CAS  Google Scholar 

  • Ledgard S.F., Freney J.R., Simpson J.R. (1985) Assessing nitrogen transfer from legumes to associated grasses, Soil. Biol. Biochem. 17, 575–577.

    Article  Google Scholar 

  • Lesuffleur F., Paynel F., Bataille M.P., Le Deunff E., Cliquet J.B. (2007) Root amino acid exudation: Measurement of high efflux rates of glycine and serine from six different plant species, Plant Soil 294, 235–246.

    Article  CAS  Google Scholar 

  • Loreau M., Hector A. (2001) Partitioning selection and complementarity in biodiversity experiments, Nature 412, 72–76.

    Article  PubMed  CAS  Google Scholar 

  • Lynch J.M., Wipps T.M. (1990) Substrate flow in the rhizosphere, Plant Soil 129, 1–10.

    Article  CAS  Google Scholar 

  • Mahieu S., Fustec J., Faure M.L., Corre-Hellou G., Crozat Y. (2007) Comparison of two 15N labelling methods for assessing nitrogen rhizodeposition of pea, Plant Soil 295, 193–205.

    Article  CAS  Google Scholar 

  • Mayer J., Buegger F., Jensen E.S., Schloter M., Heβ J. (2003) Residual nitrogen contribution from grain legumes to succeeding wheat and rape and related microbial process, Soil Biol. Biochem. 35, 21–28.

    CAS  Google Scholar 

  • McNeill A.M., Fillery I.R.P. (2008) Field measurement of lupin below ground nitrogen accumulation and recovery in the subsequent cereal-soil system in a semi-arid Mediterranean-type climate, Plant Soil 302, 297–316.

    Article  CAS  Google Scholar 

  • McNeill A.M., Hood R.C., Wood M. (1994) Direct measurement of nitrogen fixation by Trifolium repens L. and Alnus glutinosa L. using 15N2, J. Exp. Bot. 45, 749–755.

    Article  CAS  Google Scholar 

  • McNeill A.M., Zhu C., Fillery I.R.P. (1997) Use of in situ 15N-labelling to estimate the total below-ground nitrogen of pasture legumes in intact soil-plant systems, Aust. J. Agr. Resour. Ec. 48, 295–304.

    Article  Google Scholar 

  • McNeill A.M., Zhu C., Fillery I.R.P. (1998) A new approach to quantifying the N benefit from pasture legumes to succeeding wheat, Aust. J Agr. Resour. Ec. 49, 427–436.

    Article  CAS  Google Scholar 

  • Moyer-Henry K.A., Burton J.W., Israel D.W., Rufty T.W. (2006) Nitrogen Transfer Between Plants: A 15N Natural Abundance Study with Crop and Weed Species, Plant Soil 282, 7–20.

    Article  CAS  Google Scholar 

  • Murray P.J., Hatch D.J., Cliquet J.B. (1996) Impact of insect herbivory on the growth, nitrogen and carbon contents of white clover (Trifolium repens L.), Can. J. Bot. 74, 1591–1595.

    Article  Google Scholar 

  • N’guyen C. (2003) Rhizodeposition of organic C by plant: mechanisms and controls, Agronomie 23, 375–396.

    Article  Google Scholar 

  • Ofosu-Budu K.G., Fujita K., Ogata S. (1990) Excretion of ureide and other nitrogenous compounds by the root system of soybean at different growth stages, Plant Soil 128, 135–142.

    Article  CAS  Google Scholar 

  • Oghoghorie C.G.O., Pate J.S. (1972) Exploration of the nitrogen transport system in a nodulated legume using 15N, Planta 104, 35–49.

    Article  CAS  Google Scholar 

  • Padilla F.M., Pugnaire F.I. (2006) The role of nurse plants in restoration of degraded environments, Front. Ecol. Environ. 4, 196–202.

    Article  Google Scholar 

  • Pate J.S. (1973) Uptake, assimilation and transport of nitrogen compounds by plants, Soil Biol. Biochem. 5, 109–119.

    CAS  Google Scholar 

  • Paynel F., Cliquet J.B. (2003) 15N transfer from white clover to perennial ryegrass, via exudation of nitrogenous compounds, Agronomie 23, 503–510.

    Article  CAS  Google Scholar 

  • Paynel F., Murray P., Cliquet J.B. (2001) Root exudates: a pathway for short-term N transfer from clover and ryegrass, Plant Soil 229, 235–243.

    Article  CAS  Google Scholar 

  • Paynel F., Lesuffleur F., Bigot J., Diquélou S., Cliquet J.B. (2008) A study of 15N transfer between legumes and grasses, Agron. Sustain. Dev. 28, 281–290.

    Article  CAS  Google Scholar 

  • Poth M., La Favre J.S., Focht D.D. (1986) Quantification by direct 15N dilution of fixed N2 incorporation into soil by Cajanus cajan (pigeon pea), Soil Biol. Biochem. 18, 125–127.

    CAS  Google Scholar 

  • Rasmunssen J., Eriksen J., Jensen E.S., Esbensen K.H., Høgh-Jensen H. (2007) In situ carbon and nitrogen dynamics in rye-grass clover mixtures: transfers, deposition and leaching, Soil Biol. Biochem. 39, 804–815.

    Google Scholar 

  • Rochester I.J., Peoples M.B., Constable G.A., Gault R.R. (1998) Fababean and other legumes add nitrogen to irrigated cotton cropping systems, Aust. J. Exp. Agr. 38, 253–260.

    Article  Google Scholar 

  • Rochon J.J., Doyle C.J., Greef J.M., Hopkins A., Molle G., Sitzia M., Scholefield D., Smith C.J. (2004) Grazing legumes in Europe: a review of their status, management, benefits, research needs and future prospects, Grass Forage Sci. 59, 197–214.

    Google Scholar 

  • Russell C.A., Fillery I.R.P. (1996a) In situ 15N labelling of lupin below ground biomass, Aust. J. Agr. Resour. Ec. 47, 1035–1046.

    Article  CAS  Google Scholar 

  • Russell C.A., Fillery I.R.P. (1996b) Estimates of lupin below ground biomass nitrogen, dry matter, and nitrogen turnover to wheat, Aust. J. Agr. Resour. Ec. 47, 1047–1059.

    Article  CAS  Google Scholar 

  • Russelle M.P., Allan D.L., Gourley C.J.P. (1994) Direct assessment of symbiotically fixed nitrogen in the rhizosphere of alfalfa, Plant Soil 159, 233–243.

    Article  CAS  Google Scholar 

  • Sawatsky N., Soper R.J. (1991) A quantitative measurement of the nitrogen loss from the root system of field peas (Pisum avense L.) grown in the soil, Soil. Biol. Biochem. 23, 255–259.

    Article  CAS  Google Scholar 

  • Schmidtke K. (2005a) A model to predict the accuracy of measurements of legume N rhizodeposition using a split-root technique, Soil Biol. Biochem. 37, 829–836.

    CAS  Google Scholar 

  • Schmidtke K. (2005b) How to calculate nitrogen rhizodeposition: a case study in estimating N rhizodeposition in the pea (Pisum sativum L.) and grasspea (Lathyrus sativus L.) using a continuous 15N labelling split-root technique, Soil Biol. Biochem. 37, 1893–1897.

    CAS  Google Scholar 

  • Soussana J.F., Schmidtke O. (2000) Modelling the temperate grasses and legumes in cut mixtures, in: Grassland Ecophysiology and Grazing Ecology, Lemaire et al. (Eds.), CAB International London, UK, pp. 169–190.

    Google Scholar 

  • Svenningsson H., Sundin P., Liljenberg C. (1990) Lipids, carbohydrates and amino acids exuded from the axenic roots of rape seedlings exposed to water-deficit stress, Plant Cell Environ. 13, 155–162.

    CAS  Google Scholar 

  • Ta T.C., Faris M.A. (1988) Effects of environmental conditions on the fixation and transfer of nitrogen from alfalfa to associated timothy, Plant Soil 107, 25–30.

    Article  CAS  Google Scholar 

  • Ta T.C., Macdowall F.D.H., Faris M.A. (1986) Excretion of nitrogen assimilated from N2 fixed by nodulated roots of alfalfa (Medicago sativa), Can. J. Bot. 64, 2063–2067.

    Article  CAS  Google Scholar 

  • Toomsan B., McDonagh J.F., Limpinuntana V.J.H.A., Giller K.E. (1995) Nitrogen fixation by groundnut and soyabean and residual nitrogen benefits to rice in farmers’ fields in Northeast Thailand, Plant Soil 175, 45–56.

    Article  CAS  Google Scholar 

  • Umar A.S., Iqbal M. (2007) Nitrate accumulation in plants, factors affecting the process, and human health implications. A review, Agron. Sustain. Dev. 27, 45–57.

    Article  Google Scholar 

  • Unkovich M.J., Pate J.S. (2000) An appraisal of recent field measurements of symbiotic N2 fixation by annual legumes, Field Crop. Res. 65, 211–228.

    Google Scholar 

  • Uselman S.M., Qualls R.G., Thomas R.B. (1999) A test of a potential short cut in the nitrogen cycle: The role of exudation of symbiotically fixed nitrogen from the roots of a N-fixing tree and the effects of increased atmospheric CO2 and temperature, Plant Soil 210, 21–32.

    Article  CAS  Google Scholar 

  • Vance C.P. (2001) Symbiotic nitrogen fixation and phosphorus acquisition: plant nutrition in a world of declining renewable resources, Plant Physiol. 127, 390–397.

    Article  PubMed  CAS  Google Scholar 

  • Voisin A.S., Salon C., Munier-Jolain N.G., Ney B. (2002) Effect of mineral nitrogen nutrition and biomass partitioning between the shoot and roots of pea (Pisum sativum L.), Plant Soil 242, 251–262.

    Article  CAS  Google Scholar 

  • Wichern F., Mayer J., Joergensen R.G., Müller T. (2007a) Rhizodeposition of C and N in peas and oats after 13C-15N double labelling under field conditions, Soil Biol. Biochem. 30, 2527–2537.

    Google Scholar 

  • Wichern F., Mayer J., Joergensen R.G., Müller T. (2007b) Release of C and N from roots of peas and oats and their availability to soil microorganisms, Soil Biol. Biochem. 39, 2829–2839.

    CAS  Google Scholar 

  • Wichern F., Eberhardt E., Mayer J., Joergensen R.G., Müller T. (2008) Nitrogen rhizodeposition in agricultural crops: methods, estimates and future prospects, Soil Biol. Biochem. 40, 30–48.

    CAS  Google Scholar 

  • Warembourg F.R., Montange D., Bardin R. (1982) The simultaneous use of 14CO2 and 15N2 labelling techniques to study the carbon and nitrogen economy of legumes grown under natural conditions, Physiol. Plant. 56, 46–55.

    Article  CAS  Google Scholar 

  • Yasmin K., Cadish G., Baggs E.M. (2006) Comparing 15N-labelling techniques for enriching above- and below ground components of the plant-soil system, Soil. Biol. Biochem. 38, 397–400.

    Article  CAS  Google Scholar 

  • Zebarth B.J., Alder V., Sheard R.W. (1991) In situ labeling of legume residues with a foliar application of a [15]N-enriched urea solution, Commun. Soil Sci. Plant Anal. 22, 437–447.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joëlle Fustec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fustec, J., Lesuffleur, F., Mahieu, S., Cliquet, JB. (2011). Nitrogen Rhizodeposition of Legumes. In: Lichtfouse, E., Hamelin, M., Navarrete, M., Debaeke, P. (eds) Sustainable Agriculture Volume 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0394-0_38

Download citation

Publish with us

Policies and ethics