Skip to main content

Allelopathy in Compositae Plants

  • Chapter
  • First Online:
Sustainable Agriculture Volume 2
  • 5570 Accesses

Abstract

Allelopathy plays an major role in agricultural management such as weed control, crop protection, and crop re-establishment. Compositae plants have potent allelopathic activity, and the activity is confirmed through (a) bioassays with aqueous or various solvent extracts and residues, (b) fractionation, identification, and quantification of causative allelochemicals, and (c) mechanism studies on the allelochemicals. Most assessments of allelopathy involve bioassays of plant or soil extracts, leachates, fractions, and residues based on seed germination and seedling growth in laboratory and greenhouse experiments. Plant growth may be stimulated below the allelopathic threshold, but severe growth reductions may be observed above the threshold concentration depending upon the sensitivity of the receiving species. Generally germination is less sensitive than is seedling growth, especially root growth. Some approaches showed that field soil collected under donor plants significantly reduced or somewhat promoted growth of the test plants. Petri-dish bioassays with methanol extracts or fractions and causative phenolic allelochemicals showed significant phytotoxic activities in concentration- dependent manner. Delayed seed germination and slow root growth due to the extracts could be confounded with osmotic effects on rate of imbibition, delayed initiation of germination, and especially cell elongation; the main factor that affects root growth before and after the tip penetrates the seed coat. Light and electron microscopic approaches extract evaluation at the ultrastructural level have been precisely investigated. Many Compositae plants have allelopathic potentials, and the activities and types and amount of causative compounds differ depending on the plant species. The incorporation of allelopathic substances into agricultural management may reduce the use of pesticides and lessen environmental deterioration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Naib F.A., Rice E.L. (1971) Alleolpathic effect of Platanus occidentalis, Bull. Torrey Botancal Club 98, 75–82.

    Article  Google Scholar 

  • AlSaadawi I.S., AlRubeaa A.J. (1985) Allelopathic effects of Citrus aurantium L. I. Vegetational patternig, J. Chem. Ecol. 11, 1515–1525.

    Article  CAS  Google Scholar 

  • Altieri A.M., Liebman M. (1988) Weed management in agroecosystem: Ecological approaches, Florida: CRC Press.

    Google Scholar 

  • An M., Pratley J.E., Haig T. (2001) Phytotoxicity of vulpia residues: III. Biological activity of identified allelochemicals from Vulpia myuros, J. Chem. Ecol. 27, 383–394.

    Article  PubMed  CAS  Google Scholar 

  • Anderson R.C., Katz A.J., Anderson M.R. (1978) Allelopathy as a vactor in the success of Helianthus mollis. Lam, J. Chem. Ecol. 4, 9.

    Google Scholar 

  • Bansal G.L. (1990) Allelopathic potential of Linseed on buttercup (Ranunculus arvensis L.), in: Triveldi M.L. Gill B.S., Saini S.S. (Eds.), Plant Science Research in India, New Delhi: Today and Tomorrow Printers and Publishers, pp. 801–805.

    Google Scholar 

  • Baziramakenga R., Simard R.R., Leroux G.D. (1994) Effects of benzoic and cinnamic acids on growth, mineral composition, and chlorophyll content of soybean, J. Chem. Ecol. 20, 2821–2833.

    Article  CAS  Google Scholar 

  • Bell D.B. (1974) The influence of osmotic pressure in tests for allelopathy, T. Illinois State Acad. Sci. 67, 312–317.

    Google Scholar 

  • Bell E.A., Charlwood B.V. (1980) Secondary plant products, Encyclopedia of Plant Physiology, New Series, Vol. 8, Springer-Verlag, New York, 674 p.

    Google Scholar 

  • Ben-Hammouda M., Kremer R.J., Minor H.C. (1995) Phytotoxicity of extracts from sorghum plant components on wheat seedlings, Crop Sci. 35, 1652–1656.

    Article  CAS  Google Scholar 

  • Bendall G.M. (1975) The allelopathic activity of California thistle (Circium arvense) in Tasmania, Weed Res. 15, 77–81.

    Article  Google Scholar 

  • Bewley J.D., Black M. (1994) Seeds: Physiology of development and germination, 2nd ed., Plenum, New York.

    Google Scholar 

  • Black M. (1989) Seed research - past, present and future, in: Taylorson R.B. (Ed.), Recent advances in the development and germination of seeds. Plenum, New York, pp. 1–6.

    Google Scholar 

  • Bode H.R. (1940) Uber die Blattausscheidungen des wermuts and ihre Werkung auf andere Pflanzen, Planta 30, 567–572.

    Article  CAS  Google Scholar 

  • Carlson J.R. Jr., Ditterline R.L., Martin J.M., Sands D.C., Lund R.E. (1983) Alfalfa seed germination in antibiotic agar containing NaCl, Crop Sci. 23, 882–885.

    Article  Google Scholar 

  • Chaves N., Sosa T., Escudero J.C. (2001) Plant growth inhibiting flavonoids in exudate of Cistus ladanifer and in associated soils, J. Chem. Ecol. 27, 623–631.

    Article  PubMed  CAS  Google Scholar 

  • Chon S.U. (2004a) Allelopathic potential of common thistle (Cirsium japonicum) leaf extracts and residues, Korean J. Weed Sci. 24, 79–86.

    Google Scholar 

  • Chon S.U. (2004b) Phytotoxic effect of Xanthium occidentale leaf extracts on seed germination and early seedling growth of alfalfa and barnyard grass, Korean J. Crop Sci. 49, 30–35.

    Google Scholar 

  • Chon S.U., Kim. D.K. (2005) Allelopathic potential of Xanthium occidentale Extracts and Residues, Korean J. Weed Sci. 25, 163–170.

    Google Scholar 

  • Chon S.U., Nelson C.J. (2001) Effects of experimental procedures and conditions on bioassay sensitivity of alfalfa autotoxicity, Commun. Soil Sci. Plan. 32, 1607–1619.

    Article  CAS  Google Scholar 

  • Chon S.U., Choi S.K., Chung S., Jang H.G., Pyo B.S., Kim S.M. (2002) Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass, Crop Prot. 21, 1077–1082.

    Article  CAS  Google Scholar 

  • Chon S.U., Coutts J.H., Nelson C.J. (2000) Effects of light, growth media, and seedling orientation on bioassays of alfalfa autotoxicity, Agron. J. 92, 715–720.

    Google Scholar 

  • Chon S.U., Coutts J.H., Nelson C.J. (2004) Osmotic and autotoxic effects of leaf extracts on germination and seedling growth of alfalfa, Agron. J. 96, 1673–1679.

    Google Scholar 

  • Chon S.U., Jang H.G., Kim D.K., Kim Y.M., Boo H.O., Kim Y.J. (2005) Allelopathic potential in lettuce (Lactuca sativa L.) plants, Sci. Hortic. 106, 309–317.

    Article  Google Scholar 

  • Chon S.U., Jennings J.A., Nelson C.J. (2004) Alfalfa (Medicago sativa L.) autotoxicity: Current status, Allelopathy J. (in print).

    Google Scholar 

  • Chon S.U., Kim Y.M., Lee J.C. (2003a) Herbicidal potential and quantification of causative allelochemicals from several compositae weeds, Weed Res. 43, 444–450.

    Article  CAS  Google Scholar 

  • Chon S.U., Nelson C.J., Coutts J.H. (2003b) Physiological Assessment and Path Coefficient Analysis to Improve Evaluation of Alfalfa Autotoxicity, J. Chem. Ecol. 29, 2395–2406.

    Article  Google Scholar 

  • Chou C.H. (1980) Allelopathic researches in the subtropical vegetation in Taiwan, Comp. Physiol. Ecol. 5, 222–234.

    CAS  Google Scholar 

  • Chou C.H., Leu L.L. (1992) Allelopathic substances and interactions of Delonix regia (BOJ) Raf, J. Chem. Ecol. 18, 2285–2303.

    Article  Google Scholar 

  • Chung I.M., Miller D.A. (1995a) Differences in autotoxicity among seven alfalfa cultivars, Agron. J. 87, 596–600.

    Google Scholar 

  • Chung I.M., Miller D.A. (1995b) Natural herbicide potential of alfalfa residue on selected weed species, Agron. J. 87, 920–925.

    Google Scholar 

  • Cochran V.L., Elliott L.F., Papendick R.I. (1980) Carbon and nitrogen movement from surface-applied wheat straw, Soil Sci. Soc. Am. J. 44, 978–982.

    CAS  Google Scholar 

  • Connell J.H. (1990) Apparent versus “real” competition in plants, in: Grace J.B., Tilman D. (Eds.), Perspectives on plant competition, Academic Press, San Diego, CA, pp. 9–25.

    Google Scholar 

  • Cruz-Ortega R., Anaya A.L., Ramos L. (1988) Effects of allelopathic compounds of corn pollen on respiration and cell division of watermelon, J. Chem. Ecol. 14, 71–86.

    Article  CAS  Google Scholar 

  • Dayan F.E., Romagni J.G., Duke S.O. (2000) Investigation of the mode of action of natural phytotoxins, J. Chem. Ecol. 26, 2079–2094.

    Article  CAS  Google Scholar 

  • Dhyani S.K. (1978) Allelopathic potential of Eupatorium adenophorum on seed germination of Lantana camara var. aculeata, Indian J. Forestry 1, 113–119.

    Google Scholar 

  • Dilday R.H., Lin J., Yan W. (1994) Identification of allelopathy in the USDA-ARS rice germplasm collection, Aust. J. Exp. Agr. 34, 907–910.

    Article  Google Scholar 

  • Dornbos D.L. Jr., Spencer G.F. (1990) Natural products phytotoxicity, A bioassay suitable for small quantities of slightly water-soluble compounds, J. Chem. Ecol. 16, 339–351.

    Article  CAS  Google Scholar 

  • Duke S.O., Vaughn K.C., Croom E.M. Jr., Elsohly H.N. (1987) Artemisinin, a constituent of annual wormwood (Artemisia annua), is a selective phytotoxin, Weed Sci. 35, 499–505.

    Google Scholar 

  • Einhellig F.A. (1986) Mechanisms and modes of action of allelochemicals, in: Putnam A.R., Tang C.S. (Eds.), The science of allelopathy, John Wiley & Sons, New York, pp. 171–187.

    Google Scholar 

  • Einhellig F.A., Rasmussen J.A. (1993) Effect of root exudates sorgoleone on photosynthesis, J. Chem. Ecol. 19, 369–375.

    Article  CAS  Google Scholar 

  • Elliott L.F., Cochran V.L., Papendick R.I. (1981) Wheat residue and nitrogen placement effects on wheat growth in the greenhouse, Soil Sci. 131, 48–52.

    Article  CAS  Google Scholar 

  • Fadayomi O., Oyebade E.O. (1984) An investigation of allellopathy in Siam weed (Eupatorium odoratum), Geobios 11, 145–150.

    Google Scholar 

  • Fay P.K., Duke W.B (1977) An assessment of allelopathic potential in Avena gemplasm, Weed Sci. 25, 224–228.

    CAS  Google Scholar 

  • Fennimore S.A., Umeda K. (2003) Weed control in glyphosate-tolerant lettuce (Lactuca sativa), Weed Technol. 17, 738–746.

    Article  CAS  Google Scholar 

  • Fick G.W., Holt D.A., Lugg D.G. (1988) Environmental physiology and crop growth, in: Hanson A.A., Barnes D.K., Hill R.R. (Eds.), Alfalfa and alfalfa improvement, Agron. Mono. 29, ASA, CSSA, and SSSA, Madison, WI, pp. 163–194.

    Google Scholar 

  • Fisher N.H., Williamson G.B., Weidenhamer J.D., Richardson D.R. (1994) In search of allelopathy in the Florida scrub: The role of terpenoids, J. Chem. Ecol. 20, 1355–1380.

    Article  Google Scholar 

  • Fredman J., Rushkin E., Waller G.R. (1982) Highly potent germination inhibitors in aqueous eluate of fruits of bishops weed (Ammi majus L.) and avoidance of autoinhibition, J. Chem. Ecol. 8, 55–65.

    Article  Google Scholar 

  • Fuerst E.P., Putnam A.R. (1983) Separating the competitive and allelopathic components of interference: Theoretical principles, J. Chem. Ecol. 9, 937–944.

    Article  CAS  Google Scholar 

  • Funke G.L. (1943) The influence of Artemisia absinthium on neighbouring plants, BLUMEA 5, 281–293.

    Google Scholar 

  • Gentle C.B., Duggin J.A. (1997) Allelopathy as a competitive strategy in persistent thickets of Lanata camara L. in three Australian forest communities, Plant Ecol. 132, 85–95.

    Google Scholar 

  • Goel U., Sareen T.S. (1986) Allelopathic effectof trees on the undersory vegetation, Acta Bot. Indica 14, 162–166.

    Google Scholar 

  • Goplen B.P., Webster G.R. (1969) Selection in Medicago sativa for tolerance to alfalfa-sick soil of central Alberta, Agron. J. 61, 589–590.

    Google Scholar 

  • Haar M.J., Fennimore S.A. (2003) Evaluation of integrated practices for common purslane (Portulaca oleracea) management in lettuce (Lactuca sativa), Weed Technol. 17, 229–233.

    Article  Google Scholar 

  • Hall M.H., Henderlong P.R. (1989) Alfalfa autotoxic fraction characterization and initial separation, Crop Sci. 29, 425–428.

    Article  Google Scholar 

  • Halligan J.P. (1976) Toxicity of Artemisia californica to four associated herb species, Am. Midl. Nat. 95, 406–421.

    Article  Google Scholar 

  • Harborne J.B. (1980) Plant phenolics, in: Bell E.A., Charlwood B.V. (Eds.), Secondary Plant Products. Encyclopedia of Plant Physiology, New Series, Vol. 8, Springer-Verlag, New York, pp. 329–402.

    Google Scholar 

  • Hegarty T.W., Ross H.A. (1978) Differential sensitivity to moisture stress of seed germination and seedling radicle growth in calabrese (Brassica oleraces var. italica) and cress (Lepidium sativum), Ann. Bot. 42, 1003–1005.

    Google Scholar 

  • Hegde R.S., Miller D.A. (1992a) Concentration dependency and stage of crop growth in alfalfa autotoxicity, Agron. J. 84, 940–946.

    Google Scholar 

  • Hegde R.S., Miller D.A. (1992b) Scanning electron microscopy for studying root morphology and anatomy in alfalfa autotoxicity, Agron. J. 84, 618–620.

    Google Scholar 

  • Helgeson E.A., Konzak R. (1950) Phytotoxic effects of aqueous extracts of field bindweed and of Canada thistle. A preliminary report, North Dakota Agric. Exp. Station Bull. 12, 71–76.

    CAS  Google Scholar 

  • Hodgson J.M. (1963) Canada thistle, you can’t afford to kill them, Montana Agric. Exp. Station Circ. 241, 1–2.

    Google Scholar 

  • Hodgson J.M. (1968) The nature, ecology and control of Canada thistle, Tech. Bull. No. 1386, Agri. Res. Serve, USDA, USA.

    Google Scholar 

  • Holm L. (1978) Some characteristics of weed problems in two worlds, Proc. Western Soc. Weed Sci. 31, 3–12.

    Google Scholar 

  • Horsley S.B. (1977) Allelopathic interference among plants. II. Physiological modes of action, Proceedings Fourth North American Forest Biology Workshop, in: Wilcox H.E., Hamer A.F. (Eds.), Syracuse, New York: State University of New York, pp. 93–136.

    Google Scholar 

  • Hsiao T.C. (1973) Plant responses to water stress, Ann. Rev. Plant Physiol. 24, 519–570.

    Article  CAS  Google Scholar 

  • Huang Z., Liao L., Wang S., Cao G. (2000) Allelopathy of phenolics from decomposing stump-roots in replant Chinese fir woodland, J. Chem. Ecol. 26, 2211–2219.

    Article  CAS  Google Scholar 

  • Inam B., Hussain F., Farhat B. (1987) Allelopathic effects of Pakistani weeds: Xanthium strumarium L, Pakistan J. Sci. Ind. Res. 30, 530–533.

    Google Scholar 

  • Inam B., Hussain F., Farhat B. (1989) Cannabis sativa L. is allelopathic, Pakistan J. Sci. Ind. Res. 32, 617–620.

    Google Scholar 

  • Inderjit (1996) Plant phenolics in allelopathy, Bot. Rev. 62, 186–202.

    Google Scholar 

  • Inderjit, Dakshini K.M.M. (1995) On laboratory bioassays in allelopathy, Bot. Rev. 61, 28–44.

    Google Scholar 

  • Inderjit, Dakshini K.M.M. (1999) Allelopathy: One component in a multifaceted approach to ecology, in: Inderjit, Dakshini K., Foy C.L. (Eds.), Principles and Practices in Plant Ecology: Allelochemical Interactions, CRC Press, Boca Raton, FL, USA, pp. 3–4.

    Google Scholar 

  • Inderjit, Del Moral R. (1997) Is separating resource competition from allelopathy realistic? Bot. Rev. 63, 221–230.

    Google Scholar 

  • Inderjit, Olofsdotter M. (1998) Bioassays for rice allelopathy: Some concerns, in: Olofsdotter M. (Ed.), Allelopathy in rice, Int. Rice Res. Inst. Pres Manila, Philippines, pp. 45–55.

    Google Scholar 

  • Jackson J.R., Willemsen R.W. (1976) Allelopathy in the first atages of secondary succession on the piedmont of New Jersey, Am. J. Bot. 7, 1015–1020.

    Article  Google Scholar 

  • Jennings J.A. (1996) Rotational interval, soil texture and zone of influence studies on alfalfa autotoxicity, Ph.D. Dissertation, University of Missouri, Columbia, MO.

    Google Scholar 

  • Jennings J.A., Nelson C.J. (1998) Influence of soil texture on alfalfa autotoxicity, Agron. J. 90, 54–58.

    Google Scholar 

  • Kadioglu I. (2000) Effects of hearleaf cocklebur (Xanthiumstrumarium L.) extract on some crops and weeds, Asian J. Plant Sci. 3, 696–700.

    Google Scholar 

  • Kanchan S.D., Jayachandra (1979) Allelopathic effects of Parthenium hysterophorus L. III. Inhibitory effects of weed residues, Plant Soil 53, 37–47.

    Google Scholar 

  • Kaur H., Inderjit, Kaushik S. (2005) Cellular evidence of allelopathic interference of benzoic acid to mustard (Brassica juncea L.) seedling growth, Plant Physiol. Biochem. 43, 77–81.

    CAS  Google Scholar 

  • Kil B.S., Yun K.W. (1992) Allelopathic effects of water extracts of Artemisia princeps var. orientalis on selected plant species, J. Chem. Ecol. 18, 39–51.

    Article  Google Scholar 

  • Kil B.S., Yun K.W., Lee S.Y. (1992) Influence of Artemisia princeps var. orientalis components on callus induction and growth, J. Chem. Ecol. 18, 1455–1462.

    Article  CAS  Google Scholar 

  • Klein R.R., Miller D.A. (1980)  Allelopathy and its role in agriculture, Commun. Soil Sci. Plan. 11, 43–56.

    Article  Google Scholar 

  • Kohl R.K., Batish D.R. (1994) Exhibition of allelopathy by Parthenium hysterophorus L. in agroecosystems, Trop. Ecol. 35, 295–307.

    Google Scholar 

  • Kohli R.K. (1990) Allelopathic Potential of Ecucalyptus, India: MAB-DoEn Project Report.

    Google Scholar 

  • Kohli R.K., Daizy R., Verma R.C. (1993) A mathematical model to predict the tissue response to parthenin-an allelochemical, Biol. Plantarum 35, 567–576.

    Article  CAS  Google Scholar 

  • Kumari A., Kohli R.K. (1987) Autotoxicity of ragweed parthenium Parthenium hysterophorus, Weed Sci. 35, 629–632.

    Google Scholar 

  • Leather G.R. (1983) Sunflowers (Helianthus annus) are allelopathic to weeds, Weed Sci. 31, 37–41.

    Google Scholar 

  • Lee T.T. (1977) Role of phenolic inhibitors in peroxidase-mediated degradation of indol-3-acetic acid, Plant Physiol. 59, 372–375.

    Article  PubMed  CAS  Google Scholar 

  • Letourneau D., Failes G.D., Heggeness H.G. (1956) The effect of aqueous extracts of plant tissue on germination of seeds and growth of seedlings, Weeds 4, 363–368.

    Article  Google Scholar 

  • Liu D.L., Lovett J.V. (1993) Biologically active secondary metabolites of barley. II. Phytotoxicity of barley allelochemicals, J. Chem. Ecol. 19, 2231–2244.

    Article  CAS  Google Scholar 

  • Luu K.T., Matches A.G., Peters E.J. (1982) Allelopathic effect of tall fescue on birdsfoot trefoil as influenced by N fertilization and seasonal changes, Agron. J. 74, 805–808.

    Google Scholar 

  • Mann H.H., Barnes T.W. (1945) The competition between barley and certain weeds under controlled conditions, Ann. Appl. Biol. 32, 15–22.

    Article  CAS  Google Scholar 

  • Manners G.D., Galitz D.S. (1986) Allelopathy of small everlasting (Antennaria microphylla). I. Identification of constituents phytotoxic to leafy spurge (Euphorbia esula), Weed Sci. 34, 8–12.

    CAS  Google Scholar 

  • Markova S.A. (1972) Experimental investigations of the influence of oats on growth and development of Erysimum cheiranthoides L., Physiological-Biochemical Basis of Plant Interactions in Phytocenoses, in: Grodzinsky A.M. (Ed.), Vol. 3, pp. 66–68, Naukova Dumka, Kiev (in Russian, English summary).

    Google Scholar 

  • Meepagala K.M., Kuhajek J.M., Sturtz G.D., Wedge D.E. (2003) Vulgarone B, the antifungal constituent in the steam-distilled fraction of Artemisia douglasiana, J. Chem. Ecol. 29, 1771–1780.

    Article  PubMed  CAS  Google Scholar 

  • Mersie W., Singh M. (1978) Allelopathic effects of parthenium (Parthenium hysterophorus L.) extract and residue on some agronomic crops and weeds, J. Chem. Ecol. 13, 1739–1747.

    Article  Google Scholar 

  • Miller D.A. (1983) Allelopathic effects of alfalfa, J. Chem. Ecol. 9, 1059–1072.

    Article  Google Scholar 

  • Miller D.A. (1992) Allelopathy and establishment, Alfalfa Talk, Vol. 12, No. 1, Certified Alfalfa Seed Council, Davis, CA.

    Google Scholar 

  • Miller D.A. (1996) Allelopathy in forage crop systems, Agron. J. 88, 854–859.

    Google Scholar 

  • Miller R.W., Kleiman R., Powell R.G., Putnam A.R. (1988) Germination and growth inhibitors of alfalfa, J. Nat. Prod. 51, 328–330.

    Article  Google Scholar 

  • Molisch H. (1937) Der Einfluss einer Pflanze auf die andere -Allelopathie, Fischer, Jena, Germany.

    Google Scholar 

  • Neill R.L., Rice E.L. (1971) Possible role of Ambrosia psilostachya on patterning and succession in old fields, Am. Midl. Nat. 86, 344–350.

    Article  Google Scholar 

  • Newby V.K., Sablon R.M., Synge R.L. (1980) Free and bound phenolic acids of lucerne (Medicago sativa cv. Europe), Phytochemistry 19, 651–657.

    Article  CAS  Google Scholar 

  • Olofsdotter M., Navarez D. (1996) Allelopathic rice for Echinoch-loa crus-galli control, Proc. Int. Wide Control Conf., 2nd ed., Slagelse, Denmark, 25–28 June 1996, Dep. of Weed Control and Pestic. Ecology, Slagelse, Denmark, pp. 1175–1181.

    Google Scholar 

  • Park B.K. (1966) A study on productivity of grassland in Korea (I), Theses Collection of Institute of Korean Culture, Ewha Womens University 8, pp. 81–90.

    Google Scholar 

  • Pederson G.A. (1986) White clover seed germination in agar containing tall fescue leaf extracts, Crop Sci. 26, 1248–1249.

    Article  Google Scholar 

  • Peters E.J. (1968) Toxicity of tall fescue to rape and birdsfoot trefoil seeds and seedlings, Crop Sci. 8, 650–653.

    Article  Google Scholar 

  • Putnam A.R., Duke W.B. (1974) Biological suppression of weeds: Evidence for allelopathy in accessions cucumber, Science 185, 370–372.

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen J.A., Einhellig F.A. (1979) Allelopathic effects of leaf extracts of Ambrosia trifida (Compositae), Southwest. Nat. 24, 637–644.

    Google Scholar 

  • Rice E.L. (1974) Allelopathy, Academic Press, New York, 1.

    Google Scholar 

  • Rice E.L. (1984) Allelopathy, 2nd ed., Academic Press, New York, 422 p.

    Google Scholar 

  • Rice E.L. (1986) The Science of Allelopathy, in: Putnam A.R., Tang C.S. (Eds.), Wiley: New York, pp. 23–42.

    Google Scholar 

  • Rice E.L. (1995) Biological control of weeds and plant diseases: Advances in applied allelopathy, Univ. of Oklahoma Press, Norman.

    Google Scholar 

  • Ridenour W.M., Callaway R.M. (2001) The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass, Oecologia 126, 444–450.

    Article  Google Scholar 

  • Santos B.M., Dusky J.A., Stall W.M., Bewick T.A., Shilling D.G. (2003) Mechanisms of interference of smooth pigweed (Amaranthus hybridus) and common purslane (Portulaca oleracea) on lettuce as influenced by phosphorus fertility, Weed Sci. 52, 78–82.

    Article  Google Scholar 

  • Sarma K.K.V. (1976) Allelopathic potential of Parthenium hysterophorus L. on seed germination, and dry matter production in Arachis hypogea Willd., Crotoloria juncea L., and Phaseolus mungo Linn, Trop. Ecol. 17, 76–82.

    Google Scholar 

  • Siegler D.S. (1996) Chemistry and mechanisms of allelopathic interactions, Agron. J. 88, 876–885.

    Google Scholar 

  • Slatyer R.O. (1967) Plant-water relations, Academic Press, New York.

    Google Scholar 

  • Stachon W.J., Zimdal R.L. (1980) Allelopathic activitity of Canada Thistle (Circium arvense) in Colorado, Weed Sci. 28, 83–86.

    Google Scholar 

  • Stairs A.F. (1986) Life history variation in Artemisia campestris on Lake Huron sand dune system. Ph.D. thesis, The University of Western Ontario, London, Ontario.

    Google Scholar 

  • Stevens G.A., Tang C.S. (1985) Inhibition of seedling growth of crop species by recirculating root exudates of Bidens pilosa, J. Chem. Ecol. 11, 166–167.

    Article  Google Scholar 

  • Stevens K.L. (1986) Allelopathic polyacetlyenes from Centaurea repens (Russian knapwed), J. Chem. Ecol. 12, 1205–1211.

    Article  CAS  Google Scholar 

  • Stevens K.L., Merrill G.B. (1985) Sesquiterpene lactones and allelochemicals from Centaurea species, in: Thompson A.C. (Ed.), The Chemistry of Allelopathy: Biochemical Interactions Among Plants, American Chemical Society, Washington, DC, USA, pp. 83–98.

    Chapter  Google Scholar 

  • Tan R.X., Zheng W.F., Tang H.Q. (1998) Biologically active substances from the genus Artemisia, Planta Med. 64, 295–302.

    Article  PubMed  CAS  Google Scholar 

  • Thijs H., Shann J.R., Weidenhamer J.D. (1994) The effect of phytotoxins on competitive outcome in a model system, Ecology 75, 1959–1964.

    Article  Google Scholar 

  • Trenbath B.R. (1974) Biomass productivity of mixtures, Adv. Agron. 26, 177–210.

    Article  Google Scholar 

  • Van Sumere C.F., Cottenie J., Degreef J., Kint J. (1972) Biochemical studies in relation to the possible germination regulatory role of naturally occurring coumarin and phenolics, Recent Adv. Phytochem. 4, 165–221.

    Google Scholar 

  • Wardle D.A., Nicholson K.S., Ahmed M. (1992) Comparison of osmotic and allelopathic effects of grass leaf extracts on grass seed germination and radicle elongation, Plant Soil 140, 315–319.

    Article  Google Scholar 

  • Weidenhamer J.D. (1996) Distinguishing resource competition and chemical interference: Overcoming the methodological impasse, Agron J. 88, 866–875.

    Article  Google Scholar 

  • Weidenhamer J.D., Morton T.C., Romeo J.T. (1987) Solution volume and seed number: Often overlooked factors in allelopathic bioassay, J. Chem. Ecol. 13, 1481–1491.

    Article  CAS  Google Scholar 

  • Wilson R.G. Jr. (1981) Effect of Canada thistle (Cirsiumarvense) residues on growth of some crops, Weed Sci. 29, 159–165.

    Google Scholar 

  • Wu H., Haig T., Pratley J., Lemerle D., An M. (2001) Allelochemicals in wheat (Triticum aestivum L.): Variation of phemolic acids in shoot tissues, J. Chem. Ecol. 27, 125–135.

    Article  PubMed  CAS  Google Scholar 

  • Wu H., Pratley J., Lemerle D., Haig T. (1999) Identification and evaluation of toxicity of rice root elongation inhibitors in flooded soils with added wheat straw, Soil Sci. Plant Nutr. 36, 97–103.

    Google Scholar 

  • Yun K.W. (1991) Allelopathic effects of chemical substances in Artemisia princeps var. orientalis on selected species, Ph.D. thesis, Wonkwang University, Iri, Korea.

    Google Scholar 

  • Yun K.W., Choi S.K. (2003) Seasonal variation in allelopathic potential of Artemisia princeps var. orientalis on plants and microbes, J. Plant Biol. 46, 105–110.

    Article  Google Scholar 

  • Yun K.W., Kil B.S. (1992) Assessment of allelopathic potential in Artemisia princes var. orientalis residues, J. Chem. Ecol. 18, 1933–1940.

    Article  CAS  Google Scholar 

  • Yun K.W., Maun M.A. (1997) Allelopathic potential ofArtemisia campestris ssp. caudata on Lake Huron sand dunes, Can. J. Bot. 75, 1903–1912.

    Google Scholar 

  • Yun K.W., Kil B.S., Han D.M. (1993) Phytotoxic and antimicrobial activity of volatile constituents of Artemisia princeps var. orientalis, J. Chem. Ecol. 19, 2757–2766.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was conducted with support from a part of the 2005 MAF-ARPC research fund (105088-33-1-HD110). Appreciation is expressed to Dr. Young-Min Kim at Biotechnology Industrialization Center, Dongshin University, Naju, Korea, for his technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.-U. Chon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chon, SU., Nelson, C.J. (2011). Allelopathy in Compositae Plants. In: Lichtfouse, E., Hamelin, M., Navarrete, M., Debaeke, P. (eds) Sustainable Agriculture Volume 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0394-0_32

Download citation

Publish with us

Policies and ethics