Skip to main content

Defence Mechanisms of Brassicaceae: Implications for Plant-Insect Interactions and Potential for Integrated Pest Management

  • Chapter
  • First Online:
Sustainable Agriculture Volume 2

Abstract

Brassica crops are grown worldwide for oil, food and feed purposes, and constitute a significant economic value due to their nutritional, medicinal, bioindustrial, biocontrol and crop rotation properties. Insect pests cause enormous yield and economic losses in Brassica crop production every year, and are a threat to global agriculture. In order to overcome these insect pests, Brassica species themselves use multiple defence mechanisms, which can be constitutive, inducible, induced, direct or indirect depending upon the insect or the degree of insect attack. Firstly, we give an overview of different Brassica species with the main focus on cultivated brassicas. Secondly, we describe insect pests that attack brassicas. Thirdly, we address multiple defence mechanisms, with the main focus on phytoalexins, sulphur, glucosinolates, the glucosinolate-myrosinase system and their breakdown products. In order to develop pest control strategies, it is important to study the chemical ecology, and insect behaviour. We review studies on oviposition regulation, multitrophic interactions involving feeding and host selection behaviour of parasitoids and predators of herbivores on brassicas. Regarding oviposition and trophic interactions, we outline insect oviposition behaviour, the importance of chemical stimulation, oviposition-deterring pheromones, glucosinolates, isothiocyanates, nitriles, and phytoalexins and their importance towards pest management. Finally, we review brassicas as cover and trap crops, and as biocontrol, biofumigant and biocidal agents against insects and pathogens. Again, we emphasise glucosinolates, their breakdown products, and plant volatile compounds as key components in these processes, which have been considered beneficial in the past and hold great prospects for the future with respect to an integrated pest management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acheampong S., Stark J.D. (2004) Can reduced rates of pymetrozine and natural enemies control the cabbage aphid, Brevicoryne brassicae (Homoptera: Aphididae), on broccoli, Int. J. Pest Manage. 50, 275–279.

    Article  CAS  Google Scholar 

  • Agarwala B.K., Datta N. (1999) Life history response of the mustard aphid Lipaphis erysimi to phenological changes in its host, J. Bioscience. 24, 224–231.

    Google Scholar 

  • AGBIOS (2009) GM database, The AGBIOS Company, Ontario, Canada, http://www.agbios.com/dbase.php.

  • Agbogba B., Powell W. (2007) Effect of the presence of a nonhost herbivore on the response of the aphid parasitoid Diaeretiella rapae to host-infested cabbage plants, J. Chem. Ecol. 33, 2229–2235.

    Article  PubMed  CAS  Google Scholar 

  • Agelopoulos N.G., Keller M.A. (1994a) Plant-natural enemy association in the tritrophic system, Cotesiarubecula-Pieris rapae-brassiceae (cruciferae): I. Sources of infochemicals, J. Chem. Ecol. 20, 1725–1734.

    Article  CAS  Google Scholar 

  • Agelopoulos N.G., Keller M.A. (1994b) Plant-natural enemy association in the tritrophic system Cotesiarubecula-Pieris rapae-brassicaceae (cruciferae): II. Preference of C. rubecula for landing and searching, J. Chem. Ecol. 20, 1735–1748.

    Article  CAS  Google Scholar 

  • Agelopoulos N.G., Keller M.A. (1994c) Plant-natural enemy association in the tritrophic system, Cotesia rubecula-Pieris rapae-brassicaceae (cruciferae) III: Collection and identification of plant and frass volatiles, J. Chem. Ecol. 20, 1955–1967.

    Article  CAS  Google Scholar 

  • Agrawal A.A. (2000) Mechanisms, ecological consequences and agricultural implications of tritrophic interactions, Curr. Opin. Plant Biol. 3, 329–335.

    Article  PubMed  CAS  Google Scholar 

  • Agrawal A.A., Kurashige N.S. (2003) A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae, J. Chem. Ecol. 29, 1403–1415.

    Article  PubMed  CAS  Google Scholar 

  • Agrawal A.A., Laforsch C., Tollrian R. (1999) Transgenerational induction of defences in animals and plants, Nature 401, 60–63.

    Article  CAS  Google Scholar 

  • AgroAtlas (2009) Interactive Agricultural Ecological Atlas of Russia and Neighbouring Countries. Economic Plants and their Diseases, Pests and Weeds, Russia, http://www.agroatlas.ru.

  • Angus J.F., Gardner P.A., Kirkegaard J.A., Desmarchelier J.M. (1994) Biofumigation: isothiocyanates released from Brassica roots inhibit growth of the take-all fungus, Plant Soil 162, 107–112.

    Article  CAS  Google Scholar 

  • Arab A., Bento J.M.S. (2006) Plant volatiles: new perspectives for research in Brazil, Neotrop. Entomol. 35, 151–158.

    Google Scholar 

  • Aslam M., Ahmad M. (2001) Effectiveness of some insecticides against mustard aphid, Lipaphis erysimi (Kalt.) (Aphididae: Homoptera) on three different crops, J. Res. (Science) 12, 19–25.

    Google Scholar 

  • Åhman I. (1985) Oviposition behaviour of Dasineura brassicae on a high versus a low-quality Brassica host, Entomol. Exp. Appl. 39, 247–253.

    Article  Google Scholar 

  • Åhman I. (1986) Toxicities of host secondary compounds to eggs of the Brassica specialist Dasineura brassicae, J. Chem. Ecol. 12, 1481–1488.

    Article  Google Scholar 

  • Bajwa W.I., Kogan M. (2002) Compendium of IPM Definitions (CID) – What is IPM and how is it defined in the Worldwide Literature? IPPC Publication No. 998, Integrated Plant Protection Center (IPPC), Oregon State University, Corvallis, OR, 97331, USA.

    Google Scholar 

  • Baldridge G.D., O’Neill N.R., Samac D.A. (1998) Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: defense-response gene mRNA and isoflavonoid phytoalexin level in roots, Plant Mol. Biol. 38, 999–1010.

    CAS  Google Scholar 

  • Baldwin I.T., Kessler A., Halitschke R. (2002) Volatile signaling in plant-plant-herbivore interactions: what is real, Curr. Opin. Plant Biol. 5, 351–354.

    Article  PubMed  CAS  Google Scholar 

  • Barari H., Cook S.M., Clark S.J., Williams I.H. (2005) Effect of a turnip rape (Brassica rapa) trap crop on stem-mining pests and their parasitoids in winter oilseed rape (Brassica napus), BioControl 50, 69–86.

    Article  Google Scholar 

  • Barker A., Molotsane R., Müller C., Schaffner U., Städler E. (2006) Chemosensory and behavioural responses of the turnip sawfly, Athalia rosae, to glucosinolates and isothiocyanates, Chemoecology 16, 209–218.

    Article  CAS  Google Scholar 

  • Barron A.B. (2001) The life and death of Hopkins’ host-selection principle, J. Insect Behav. 14, 725–737.

    Article  Google Scholar 

  • Bartlet E., Williams I.H. (1991) Factors restricting the feeding of the cabbage stem flea beetle (Psylliodes chrysocephala), Entomol. Exp. Appl. 60, 233–238.

    Article  Google Scholar 

  • Bartlet E., Blight M., Hick A., Williams I.H. (1993) The responses of the cabbage seed weevil (Ceutorhynchus assimilis) to the odour of oilseed rape (Brassica napus) and to some volatile isothiocyanates, Entomol. Exp. Appl. 68, 295–302.

    Article  CAS  Google Scholar 

  • Bartlet E., Mithen R., Clark S.J. (1996) Feeding of the cabbage stem flea beetle Psylliodes chrysocephala on high and low glucosinolate cultivars of oilseed rape, Entomol. Exp. Appl. 80, 87–89.

    Article  Google Scholar 

  • Bartlet E., Blight M., Lane P., Williams I.H. (1997) The responses of the cabbage seed weevil Ceutorhynchus assimilis to volatile compounds from oilseed rape in a linear track olfactometer, Entomol. Exp. Appl. 85, 257–262.

    Article  Google Scholar 

  • Bartlet E., Kiddle G., Williams I. (1999) Wound-induced increases in the glucosinolate content of oilseed rape and their effect on subsequent herbivory by a crucifer specialist, Entomol. Exp. Appl. 91, 163–167.

    Article  CAS  Google Scholar 

  • Bartlet E., Blight M., Pickett J., Smart L., Turner G., Woodcock C. (2004) Orientation and feeding responses of the pollen beetle Meligethesaeneus to Candytuft Iberis amara, J. Chem. Ecol. 30, 913–925.

    Article  PubMed  CAS  Google Scholar 

  • Baum J.A., Bogaert T., Clinton W., Heck G.R., Feldmann P., Ilagan O., Johnson S., Plaetinck G., Munyikwa T., Pleau M., Vaughn T., Roberts J. (2007) Control of coleopteran insect pests through RNA interference, Nat. Biotechnol. 25, 1322–1326.

    Article  CAS  Google Scholar 

  • Baur R., Birch A.N.E., Hopkins R.J., Griffiths D.W., Simmonds M.S.J., Städler E. (1996) Oviposition and chemosensory stimulation of the root flies Delia radicum and D. floralis in response to plants and leaf surface extracts from resistant and susceptible Brassica genotypes, Entomol. Exp. Appl. 78, 61–75.

    Article  Google Scholar 

  • Baur R., Städler E., Monde K., Takasugi M. (1998) Phytoalexins from Brassica (Cruciferae) as oviposition stimulants for the cabbage root fly, Delia radicum, Chemoecology 8, 163–168.

    Article  CAS  Google Scholar 

  • Behan M., Schoonhoven L.M. (1978) Chemoreception of an oviposition deterrent associated with eggs in Pierisbrassicae, Entomol. Exp. Appl. 24, 163–179.

    Article  CAS  Google Scholar 

  • Bellostas N., Sørensen A.D., Sørensen J.C., Sørensen H., Sørensen M.D., Gupta S.K., Kader J.C. (2007) Genetic variation and metabolism of glucosinolates, Adv. Bot. Res. 45, 369–415.

    Article  CAS  Google Scholar 

  • Bergström G., Rothschild M., Groth I., Crighton C. (1994) Oviposition by butterflies on young leaves: Investigation of leaf volatiles, Chemoecology 5, 147–158.

    Article  Google Scholar 

  • Bezemer T., Van Dam N.M. (2005) Linking aboveground and belowground interactions via induced plant defenses, Trends Ecol. Evol. 20, 617–624.

    Google Scholar 

  • Birch A.N.E., Griffiths D.W., Hopkins R.J., Macfarlane Smith W.H., McKinlay R.G. (1992) Glucosinolate responses of swede, kale, forage and oilseed rape to root damage by turnip root fly (Delia floralis) larvae, J. Sci. Food Agr. 60, 1–9.

    Article  CAS  Google Scholar 

  • Birkett M.A., Campbell C.A.M., Chamberlain K., Guerrieri E., Hick A.J., Martin J.L., Matthes M., Napier J.A., Pettersson J., Pickett J.A., Poppy G.M., Pow E.M., Pye B.J., Smart L.E., Wadhams G.H., Wadhams L.J., Woodcock C.M. (2000) New roles for cis-jasmone as an insect semiochemical and in plant defence, Proc. Natl Acad. Sci. (USA) 97, 9329–9334.

    Article  CAS  Google Scholar 

  • Blaakmeer A. (1994) Infochemicals in a tritrophic system: interactions between Brassica, Pieris and Cotesia. Dissertation, No. 1802, Wageningen UR Library Catalogue.

    Google Scholar 

  • Blaakmeer A., Geervliet J., Van Loon J., Posthumus M., Van Beek T., De Groot A. (1994) Comparative headspace analysis of cabbage plants damaged by two species of Pieris caterpillars: consequences for in-flight host location by Cotesia parasitoids, Entomol. Exp. Appl. 73, 175–182.

    Article  Google Scholar 

  • Blande J., Pickett J., Poppy G. (2007) A comparison of semiochemically mediated interactions involving specialist and generalist Brassica-feeding aphids and the braconid parasitoid Diaeretiella rapae, J. Chem. Ecol. 33, 767–779.

    Article  PubMed  CAS  Google Scholar 

  • Blight M.M., Smart L.E. (1999) Influence of visual cues and isothiocyanate lures on capture of the pollen beetle, Meligethes aeneus in field traps, J. Chem. Ecol. 25, 1501–1516.

    Article  CAS  Google Scholar 

  • Blight M.M., Pickett J.A., Wadhams L.J., Woodcock C.M. (1995) Antennal perception of oilseed rape, Brassicanapus (Brassicaceae), volatiles by the cabbage seed weevil Ceutorhynchus assimilis (Coleoptera, Curculionidae), J. Chem. Ecol. 21, 1649–1664.

    Article  CAS  Google Scholar 

  • Blossey B., Hunt-Joshi T.R. (2003) Belowground by insects: Influence on plants and aboveground herbivores, Annu. Rev. Entomol. 48, 521–547.

    Article  PubMed  CAS  Google Scholar 

  • Bodnaryk R.P. (1992) Effects of wounding on glucosinolates in the cotyledons of oilseed rape and mustard, Phytochemistry 31, 2671–2677.

    Article  CAS  Google Scholar 

  • Boman H.G. (1995) Peptide antibiotics and their role in innate immunity, Annu. Rev. Immunol. 13, 61–92.

    Article  PubMed  CAS  Google Scholar 

  • Bones A.M. (1990) Distribution of β-thioglucosidase activity in intact plants, cell and tissue cultures and regenerant plants of Brassica napus L., J. Exp. Bot. 41, 737–744.

    Article  CAS  Google Scholar 

  • Bones A., Iversen T.H. (1985) Myrosin cells and myrosinase, Isr. J. Bot. 34, 351–375.

    CAS  Google Scholar 

  • Bones A.M., Rossiter J.T. (1996) The myrosinase-glucosinolate system, its organisation and biochemistry, Physiol. Plantarum 97, 194–208.

    Article  CAS  Google Scholar 

  • Bones A.M., Rossiter J.T. (2006) The enzymic and chemically induced decomposition of glucosinolates, Phytochemistry 67, 1053–1067.

    Article  PubMed  CAS  Google Scholar 

  • Bones A.M., Slupphaug G. (1989) Purification, characterization and partial amino acid sequencing of β-thioglucosidase from rapeseed, J. Plant Physiol. 134, 722–729.

    CAS  Google Scholar 

  • Bones A.M., Thangstad O.P., Haugen O., Espevik T. (1991) Fate of myrosin cells - Characterization of monoclonal antibodies against myrosinase, J. Exp. Bot. 42, 1541–1549.

    Article  CAS  Google Scholar 

  • Bones A.M., Visvalingam S., Thangstad O.P. (1994) Sulphate can induce differential expression of thioglucoside glucohydrolases (myrosinases), Planta 193, 558–566.

    Article  CAS  Google Scholar 

  • Borregaard N., Elsbach P., Ganz T., Garred P., Svejgaard A. (2000) Innate immunity: from plants to humans, Immunol. Today 21, 68–70.

    CAS  Google Scholar 

  • Boydston R.A. (2004) Take cover from the elements - Brassica cover crops can control weeds and reduce the use of crop protectants in vegetable rotations, American Vegetable Grower, March 2004, pp. 18–19.

    Google Scholar 

  • Bridges M., Jones A.M.E., Bones A.M., Hodgson C., Cole R., Bartlet E., Wallsgrove R., Karapapa V.K., Watts N., Rossiter J.T. (2002) Spatial organization of the glucosinolate-myrosinase system in Brassica specialist aphids is similar to that of the host plant, Proc. R. Soc. Lond. B 269, 187–191.

    Article  CAS  Google Scholar 

  • Bromand B. (1990) Diversities in oilsed rape growing within the western palaearctic regional section, IOBC/WPRS Bull. 13, 7–31.

    Google Scholar 

  • Brown P.D., Morra M.J. (1997) Control of soil-borne plant pests using glucosinolate-containing plants, Adv. Agron. 61, 67–231.

    Google Scholar 

  • Bruinsma M., Van Dam N., Van Loon J., Dicke M. (2007) Jasmonic acid-induced changes in Brassica oleracea affect oviposition preference of two specialist herbivores, J. Chem. Ecol. 33, 655–668.

    Article  PubMed  CAS  Google Scholar 

  • Bruinsma M., Posthumus M.A., Mumm R., Mueller M.J., Van Loon J., Dicke M. (2009) Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparision with induction by herbivores, J. Exp. Bot., DOI: 10.1093/jxb/erp101.

    Google Scholar 

  • Bukovinszky T., Poelman E.H., Gols R., Prekatsakis G., Vet L.E., Harvey J.A., Dicke M. (2009) Consequences of constitutive and induced variation in plant nutritional quality for immune defence of a herbivore against parasitism, Oecologia 160, 299–308.

    Article  PubMed  Google Scholar 

  • Burmeister W., Härtel F., Brandt A., Rossiter J.T., Bones A.M. (2005) The crystal structure at 1.1 Å resolution of myrosinase from the aphid Brevicoryne brassicea shows its close similarity with β-glucosidases, Insect Biochem. Molec. 35, 1311–1320.

    Google Scholar 

  • Capinera J.L. (2004) Cabbageworm, Pieris rapae (Linnaeus) (Lepidoptera: Pieridae), Encyclopedia of Entomology, Kluwer, Dordrecht, The Netherlands, pp. 444–445.

    Google Scholar 

  • Capinera J.L. (2008) Cabbage looper, Trichoplusia ni (Hübner) (Insecta: Lepidoptera: Noctuidae), EENY-116, Florida Cooperative Extension Service, University of Florida IFAS Extension.

    Google Scholar 

  • Cardé R.T., Millar J.G. (2004) Advances in insect chemical ecology, Cambridge Univ. Press, Cambridge, UK.

    Book  Google Scholar 

  • Carlsson J., Lagercrantz U., Sundström J., Teixeira R., Wellmer F., Meyerowitz E., Glimelius K. (2007) Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers, Plant J. 49, 452–462.

    Article  PubMed  CAS  Google Scholar 

  • Cartea M.E., Padilla G., Vilar M., Velasco P. (2009) Incidence of the major Brassica pests in northeastern Spain, J. Econ. Entomol. 102, 767–773.

    Article  PubMed  CAS  Google Scholar 

  • Chadchawan S, Bishop J., Thangstad O.P., Bones A.M., Mitchell-Olds T., Bradley D. (1993) Arabidopsis cDNA sequence encoding myrosinase, Plant Physiol. 103, 671–672.

    Article  PubMed  CAS  Google Scholar 

  • Charleston D.S., Kfir R. (2000) The possibility of using Indian mustard, Brassica juncea, as a trap crop for the diamondback moth Plutella xylostella in South Africa, Crop Prot. 19, 455–460.

    Google Scholar 

  • Chattopadhyay C., Agrawal R., Kumar A., Singh Y.P., Roy S.K., Khan S.A., Bhar L.M., Chakravarthy N.V.K., Srivastava A., Patel B.S., Srivastava B., Singh C.P., Mehta S.C. (2005) Forecasting of Lipaphis erysimi on oilseed Brassicas in India - a case study, Crop Prot. 24, 1042–1053.

    Article  Google Scholar 

  • Chow J.K., Akhtar Y., Isman M.B. (2005) The effects of larval experience with a complex plant latex on subsequent feeding and oviposition by the cabbage looper moth: Trichoplusia ni (Lepidoptera: Noctuidae), Chemoecology 15, 129–133.

    Article  Google Scholar 

  • Cintas N.A., Koike S.T., Bull C.T. (2002) A new pathovar, Pseudomonas syringae pv. alisalensis pv. nov., proposed for the causal agent of bacterial blight of broccoli and broccoli raab, Plant Dis. 86, 992–998.

    Article  Google Scholar 

  • Cirio V. (1971) Reperti sul meccanismo stimolo-riposta nell’ ovideposizione del Dacus oleae Gmelin (Diptera, Trypetidae), Redia 52, 557–600.

    Google Scholar 

  • Clark A. (2007) Managing cover crops profitably (3rd ed.), Sustainable Agricultural Network (SAN), Handbook series Book 9, A publication of the Sustainable Agriculture Network with funding by the Sustainable Agriculture Research and Education Program of CSREES, U.S. Department of Agriculture. Beltsville, MD, USA.

    Google Scholar 

  • Clossais-Bernard N., Larher F. (1991) Physiological role of glucosinolates in Brassica napus, Concentration and distribution pattern of glucosinolates among plant organs during a complete life cycle, J. Sci. Food Agr. 56, 25–38.

    Article  Google Scholar 

  • Cole R.A. (1994) Locating a resistance mechanism to the cabbage aphid in two wild Brassicas, Entomol. Exp. Appl. 71, 23–31.

    Article  Google Scholar 

  • Cole R.A. (1997) Comparison of feeding behaviour of two Brassica pests Brevicoryne brassicae and Myzus persicae on wild and cultivated Brassica species, Entomol. Exp. Appl. 85, 135–143.

    Article  Google Scholar 

  • Cook S.M., Smart L.E., Martin J.L., Murray D.A., Watts N.P., Williams I.H. (2006) Exploitation of host plant preferences in pest management strategies for oilseed rape (Brassica napus), Entomol. Exp. Appl. 119, 221–229.

    Article  Google Scholar 

  • Cook S.M., Khan Z.R., Pickett J.A. (2007a) The use of push-pull strategies in integrated pest management, Annu. Rev. Plant Biol. 52, 375–400.

    CAS  Google Scholar 

  • Cook S.M., Rasmussen H., Birkett M., Murray D., Pye B., Watts N., Williams I. (2007b) Behavioural and chemical ecology underlying the success of turnip rape (Brassica rapa) trap crops in protecting oilseed rape (Brassica napus) from the pollen beetle (Meligethes aeneus), Arthropod-Plant Interact. 1, 57–67.

    Article  Google Scholar 

  • Cooper R.M., Resende M.L.V., Flood J., Rowan M.G., Beale M.H., Potter U. (1996) Detection and cellular localization of elemental sulphur in disease resistant genotypes of Theobroma cacao, Nature 379, 159–162.

    Article  CAS  Google Scholar 

  • Cox C.J., Lambert B., McCarty L.B., Toler, J.E., Lewis, S.A., Bruce Martin S. (2006) Suppressing sting nematodes with Brassica sp., poinsettia, and spotted spurge extracts, Agron. J. 98, 962–967.

    Article  Google Scholar 

  • Damodaram T., Hegde D.M. (2002) Oilseeds Situation: A Statistical Compendium 2002, Directorate of Oilseeds Research, Hyderabad 500030, India, p. 471.

    Google Scholar 

  • Dandurand L.M., Mosher R.D., Knudsen G.R. (2000) Combined effects of Brassica napus seed meal and Trichoderma harzianum on two soilborne plant pathogens, Can. J. Microbiol. 46, 1051–1057.

    PubMed  CAS  Google Scholar 

  • David W.A.L., Gardiner B.O.C. (1966) The effect of sinigrin on the feeding of Pieris brassicae L. larvae transferred from various diets, Entomol. Exp. Appl. 9, 95–98.

    Article  CAS  Google Scholar 

  • Dawson G.W., Griffiths D.C., Pickett J.A., Wadhams L.J., Woodcock C.M. (1987) Plant-derived synergists of alarm pheromone from turnip aphid, Lipaphis (Hyadaphis) erysimi (Homoptera, Aphididae), J. Chem. Ecol. 13, 1663–1671.

    Article  CAS  Google Scholar 

  • Dawson G.W., Griffiths D.C., Merritt L.A. Mudd A., Pickett J.A., Wadhams L.J., Woodcock C.M. (1990) Aphid semiochemicals - A review, and recent advances on the sex pheromone, J. Chem. Ecol. 16, 3019–3030.

    Google Scholar 

  • De Boer J., Hordijk C., Posthumus M., Dicke M. (2008) Prey and non-prey arthropods sharing a host plant: Effects on induced volatile emission and predator attraction, J. Chem. Ecol. 34, 281–290.

    Article  PubMed  CAS  Google Scholar 

  • De Jong R., Städler E. (1999) The influence of odour on the oviposition behaviour of the cabbage root fly, Chemoecology 9, 151–154.

    Article  Google Scholar 

  • De Jong R., Maher N., Patrian B. Städler E., Winkler T. (2000) Rutabaga roots, a rich source of oviposition stimulants for the cabbage root fly, Chemoecology 10, 205–209.

    Google Scholar 

  • Dicke M. (1999) Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods, Entomol. Exp. Appl. 91, 131–142.

    Article  CAS  Google Scholar 

  • Dicke M., Sabelis M.W. (1989) Does it pay plants to advertise for bodyguards? Towards a cost-benefit analysis of induced synonome production, SPB Academic Publishing, The Hague, The Netherlands.

    Google Scholar 

  • Dicke M., Sabelis M.W. (1992) Costs and benefts of chemical information conveyance: proximate and ultimate factors, in: Roitberg B.D., Isman M.B. (Eds.), Insect Chemical ecology, An evolutionary approach, Chapman and Hall, New York, USA, pp. 122–155.

    Google Scholar 

  • Dicke M., Van Loon J.J.A. (2000) Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context, Entomol. Exp. Appl. 97, 237–249.

    Article  CAS  Google Scholar 

  • Dicke M., Hilker M. (2003) Induced plant defences: from molecular biology to evolutionary ecology, Basic Appl. Ecol. 4, 3–14.

    CAS  Google Scholar 

  • Dicke M., Sabelis M.W., Takabayashi J., Bruin J., Posthumus M.A. (1990) Plant strategies of manipulating predator prey interactions through allelochemicals: prospects for application in pest control, J. Chem. Ecol. 16, 3091–3118.

    Article  CAS  Google Scholar 

  • Dicke M., De Boer J.G., Hofte M., Rocha-Granados M.C. (2003) Mixed blends of herbivore-induced plant volatiles and foraging success of carnivorous arthropods, Oikos 101, 38–48.

    Article  Google Scholar 

  • Dicke M., Van Loon J.J.A., De Jong P.W. (2004) Ecology: enhanced: ecogenomics benefits community ecology, Science 305, 618–619.

    Article  PubMed  CAS  Google Scholar 

  • Dixon R.A. (2001) Natural products and plant disease resistance, Nature 411, 843–847.

    Article  PubMed  CAS  Google Scholar 

  • Dong J.Z., Keller W.A., Yan W., Georges F. (2004) Gene expression at early stages of Brassica napus seed development as revealed by transcript profiling of seed-abundant cDNAs, Planta 218, 483–491.

    Article  PubMed  CAS  Google Scholar 

  • Du Toit L.J. (2007) Crop profile for cabbage seed in Washington, Washington State University Extension bulletin, MISC0358E.

    Google Scholar 

  • Dubuis P.H. (2004) Effect of sulfur deficiency on the resistance of oilseed rape to fungal pathogens and expression profiling of the glutathione S- transferase family of Arabidopsis thaliana, Doctoral Thesis, Institute of Plant Biology, University of Fribourg, Switzerland.

    Google Scholar 

  • Dubuis P.H., Marazzi C., Stadler E., Mauch F. (2005) Sulphur deficiency causes a reduction in antimicrobial potential and leads to increased disease susceptibility of oilseed rape, J. Phytopathol. 153, 27–36.

    Article  CAS  Google Scholar 

  • Duran C., Edwards D., Batley J. (2009) Genetic maps and the use of synteny, Methods Mol. Biol. 513, 41–55.

    CAS  Google Scholar 

  • Dutta I., Majumder P., Saha P., Ray K., Das S. (2005) Constitutive and phloem specific expression of Allium sativum leaf agglutinin (ASAL) to engineer aphid (Lipaphis erysimi) resistance in transgenic Indian mustard (Brassica juncea), Plant Sci. 169, 996–1007.

    Article  CAS  Google Scholar 

  • Ekbom B. (1995) Insect pests of Brassica oilseeds, in: Kimber D., McGregor I. (Eds.), Brassica Oilseeds- Production and Utilisation, CAB International, UK.

    Google Scholar 

  • Ekbom B., Borg A. (1996) Pollen beetle (Meligethes aeneus) oviposition and feeding preference on different host plant species, Entomol. Exp. Appl. 78, 291–299.

    Article  Google Scholar 

  • Ekbom B., Ferdinand V. (2003) Field oviposition rates and egg load dynamics of pollen beetles (Meligethes aeneus Fab.) (Colepotera: Nitidulidae), Agr. Forest Entomol. 5, 247–252.

    Article  Google Scholar 

  • Ester A., De Putter H., Van Bilsen J.G.P.M. (2003) Filmcoating the seed of cabbage (Brassica oleracea L. convar. Capitata L.) and cauliflower (Brassica oleracea L. var. Botrytis L.) with imidacloprid and spinosad to control insect pests, Crop Prot. 22, 761–768.

    CAS  Google Scholar 

  • Evans K.A., Allen-Williams L.J. (1992) Electroantennogram responses of the cabbage seed weevil, Ceutorhynchus assimilis to oilseed rape Brassica napus ssp. oleifera, volatiles, J. Chem. Ecol. 18, 1641–1659.

    Article  CAS  Google Scholar 

  • Evans K.A., Allen-Williams L.J. (1994) Laboratory and field response of the pollen beetle, Meligethes aeneus, to the odour of oilseed rape, Physiol. Entomol. 19, 285–290.

    Google Scholar 

  • Evans K.A., Allen-Williams L.J. (1998) Response of cabbage seed weevil (Ceutorhynchus assimilis) to baits of extracted and synthetic host-plant odor, J. Chem. Ecol. 24, 2101–2114.

    Article  CAS  Google Scholar 

  • Fahey J.W., Zalcmann A.T., Talalay P. (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants, Phytochemistry 56, 5–51.

    Article  PubMed  CAS  Google Scholar 

  • Falk A., Taipalensuu J., Ek B., Lenman M., Rask L. (1995) Characterization of rapeseed myrosinase-binding protein, Planta 195, 387–395.

    Article  PubMed  CAS  Google Scholar 

  • FAOSTAT (2009) Publically available databases from: Food and Agricultural Organization of the United Nations (FAO),http://faostat.fao.org/.

  • Fatouros N.E., Bukovinszkine’Kiss G., Kalkers L.A., Gamborena R.S., Dicke M., Hilker M. (2005a) Oviposition-induced plant cues: do they arrest Trichogramma wasps during host location, Entomol. Exp. Appl. 115, 207–215.

    Article  Google Scholar 

  • Fatouros N.E., Van Loon J.J.A., Hordijk K.A., Smid H.M., Dicke M. (2005b) Herbivore-induced plant volatiles mediate in-flight host discrimination by parasitoids, J. Chem. Ecol. 31, 2033–2047.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson A.W., Williams I.H. (1991) Deposition and longevity of oviposition-deterring pheromone in the cabbage seed weevil, Physiol. Entomol. 16, 27–33.

    Google Scholar 

  • Ferguson A.W., Ziesmann J., Blight M.M., Williams I.H., Wadhams L.J., Clark S.J., Woodcock C.M., Mudd A. (1999a) Perception of oviposition-deterring pheromone by cabbage seed weevil (Ceutorhynchus assimilis), J. Chem. Ecol. 25, 1655–1670.

    Article  CAS  Google Scholar 

  • Ferguson A.W., Solinas M., Ziesmann J., Isidoro N., Williams I.H., Scubla P., Mudd A., Clark S.J., Wadhams L.J. (1999b) Identification of the gland secreting oviposition-deterring pheromone in the cabbage seed weevil, Ceutorhynchus assimilis and the mechanism of pheromone deposition, J. Insect Physiol. 45, 687–699.

    Article  CAS  Google Scholar 

  • Fernie A.R., Schauer N. (2008) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet. 25, 39–48.

    Article  PubMed  CAS  Google Scholar 

  • Ferry N., Mulligan E.A., Stewart C.N., Tabashnik B.E., Port G.R., Gatehouse A.M. (2006) Prey-mediated effects of transgenic canola on a beneficial, non-target, carabid beetle, Transgenic Res. 15, 501–514.

    CAS  Google Scholar 

  • Font R., Del Rio-Celestino M., Fernandez J.M., De Haro A. (2003) Acid detergent fiber analysis in oilseed brassicas by near-infrared spectroscopy, J. Agr. Food Chem. 51, 2917–2922.

    Article  CAS  Google Scholar 

  • Font R., Del Rio-Celestino M., Rosa E., Aires A., De Hardo-Bailon A. (2005) Glucosinolate assessment in Brassica oleracea leaves by near-infrared spectroscopy, J. Agr. Sci. 143, 65–73.

    Article  CAS  Google Scholar 

  • Foo H.L., Grønning L.M., Goodenough L., Bones A.M., Danielsen B.E., Whiting D.A., Rossiter J.T. (2000) Purification and characterisation of epithiospecifier protein from Brassica napus: Enzymic intramolecular sulphur addition within alkenyl thiohydroximates derived from alkenyl glucosinolate hydrolysis, FEBS Lett. 486, 243–246.

    Article  Google Scholar 

  • Foster S.P., Harris M.O. (1997) Behavioural manipulation methods for insect pest-management, Annu. Rev. Entomol. 42, 123–146.

    Article  PubMed  CAS  Google Scholar 

  • Francis F., Lognay G., Wathelet J.P., Haubruge E. (2001) Effects of allelochemicals from first (Brassicaceae) and second (Myzus persicae and Brevicoryne brassicae) trophic levels on Adalia bipunctata, J. Chem. Ecol. 27, 243–256.

    Article  PubMed  CAS  Google Scholar 

  • Gange A.C., Brown V.K. (1997) Multitrophic interactions in terrestrial systems, Blackwell Science, Oxford, UK.

    Google Scholar 

  • Gardiner J.B., Morra M.J., Eberlein C.V., Brown P.D., Borek V. (1999) Allelochemicals released in soil following incorporation of rapeseed (Brassica napus) green manures, J. Agr. Food Chem. 47, 3837–3842.

    Article  CAS  Google Scholar 

  • Gardner S.M., Dissevelt M., Van Lenteren J.C. (2007) Behavioural adaptations in host finding by Trichogramma evanescens: the influence of oviposition experience on response to host contact kairomones, B. Insectol. 60, 23–30.

    Google Scholar 

  • Geervliet J., Vet L.E.M., Dicke M. (1994) Volatiles from damaged plants as major cues in long-range host-searching by the specialist parasitoid Cotesia rubecula, Entomol. Exp. Appl. 73, 289–297.

    Article  CAS  Google Scholar 

  • Geervliet J.B.F., Posthumus M.A., Vet L.E.M., Dicke M. (1997) Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species, J. Chem. Ecol. 23, 2935–2954.

    Article  CAS  Google Scholar 

  • Geervliet J.B.F., Vreugdenhil A.I., Dicke M., Vet L.E.M. (1998) Learning to discriminate between infochemicals from different plant-host complexes by the parasitoids Cotesia glomerata and C. rubecula, Entomol. Exp. Appl. 86, 241–252.

    Article  CAS  Google Scholar 

  • Girard C., Bonade-Bottino M., Pham-Delegue M.H., Jouanin L. (1998) Two strains of cabbage seed weevil (Coleoptera: Curculionidae) exhibit differential susceptibility to a transgenic oilseed rape expressing oryzacystatin I, J. Insect Physiol. 44, 569–577.

    Article  CAS  Google Scholar 

  • Golizadeh A.L.I., Kamali K., Fathipour Y. Abbasipour H. (2007) Temperature-dependent development of diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae) on two brassicaceous host plants, Insect Sci. 14, 309–316.

    Google Scholar 

  • Gols R., Bukovinszky T., Van Dam N., Dicke M., Bullock J., Harvey J. (2008a) Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica Populations, J. Chem. Ecol. 34, 132–143.

    Article  PubMed  CAS  Google Scholar 

  • Gols R., Wagenaar R., Bukovinszky T., Van Dam N.M., Dicke M., Bullock J.M., Harvey J.A. (2008b) Genetic variation in defense chemistry in wild cabbages affects herbivores and their endoparasitoids, Ecology 89, 1616–1626.

    Article  PubMed  Google Scholar 

  • Gols R., Harvey J. (2009) Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoids, Phytochem. Rev. 8, 187–206.

    CAS  Google Scholar 

  • Gomez-Campo C. (1999) Taxonomy, in: Gomez-Campo C. (Ed.), Development in Plant Genetics and Breeding. Elsevier, Amsterdam, The Netherlands, pp. 3–23.

    Google Scholar 

  • Görnitz K. (1956) Weitere Untersuchungen über Insekten-Attraktivstoffe aus Cruciferen, Nachrichtenbl. Dtsch. Pflanzenschutzdienst N.F. 10, 137–147.

    Google Scholar 

  • Graner G., Hamberg M., Meijer J. (2003) Screening of oxylipins for control of oilseed rape (Brassica napus) fungal pathogens, Phytochemistry 63, 89–95.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths D.W., Birch A.N.E., Macfarlane-Smith W.H. (1994) Induced changes in the indole glucosinolate content of oilseed and forage rape (Brassica napus) plants in response to either turnip-root-fly (Delia floralis) larval feeding or artificial root damage, J. Sci. Food Agr. 65, 171–178.

    Article  CAS  Google Scholar 

  • Gripenberg S., Roslin T. (2007) Up or down in space? Uniting the bottom-up versus top-down paradigm and spatial ecology, Oikos 116, 181–188.

    Google Scholar 

  • Guerena M. (2006) Cole crops and other Brassicas: Organic production, ATTRA National Sustainable Agriculture Information Service, NCAT, http://attra.ncat.org.

  • Guignard L. (1890) Sur la localization des principes qui fournissent les essences sulfurées des crucifers, C.R. Acad. Hebd. - Seances III, 249–251.

    Google Scholar 

  • Gupta P.D., Thorsteinson A.J. (1960) Food plant relationships of the diamond-back moth (Plutella maculipennis) (Curt.), Entomol. Exp. Appl. 3, 305–314.

    Article  Google Scholar 

  • Halkier B.A., Gershenzon J. (2006) Biology and biochemistry of glucosinolates, Ann. Rev. Plant Biol. 57, 303–333.

    Article  CAS  Google Scholar 

  • Hamilton A.J., Endersby N.M., Ridland P.M., Zhang J., Neal M. (2005) Effects of cultivar on oviposition preference, larval feeding and development time of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), on some Brassica oleracea vegetables in Victoria, Aust. J. Entomol. 44, 284–287.

    Article  Google Scholar 

  • Hansen L.M. (2004) Economic damage threshold model for pollen beetles (Meligethes aeneus F.) in spring oilseed rape (Brassica napus L.) crops, Crop Prot. 23, 43–46.

    Article  Google Scholar 

  • Harvey J.A., Van Dam N.M., Gols R. (2003) Interactions over four trophic levels: foodplant quality affects development of a hyperparasitoid as mediated through a herbivore and its primary parasitoid, J. Anim. Ecol. 72, 520–531.

    Article  Google Scholar 

  • Haukioja E. (1999) Ecology: bite the mother, fight the daughter, Nature 401, 22–23.

    Article  CAS  Google Scholar 

  • Hawkes C., Coaker T.H. (1979) Factors affecting the behavioural responses of the adult cabbage root fly, Deliabrassicae, to host plant odour, Entomol. Exp. Appl. 25, 45–58.

    Article  Google Scholar 

  • Heil M. (2008) Indirect defence via tritrophic interactions, New Phytol. 178, 41–61.

    Article  PubMed  CAS  Google Scholar 

  • Heinricher E. (1884) Über Eiweissstoffe führende Idioblasten bei einigen Cruciferen, Ber. Dtsch. Bot. Ges. II, 463–467.

    Google Scholar 

  • Hern A., Edwards-Jones G., McKinlay R.G. (1996) A review of the pre-oviposition behaviour of small cabbage white butterfly Pieris rapae (Lepidoptera: Pieridae), Ann. Appl. Biol. 128, 349–371.

    Article  Google Scholar 

  • Hilker M., Meiners T. (2002) Induction of plant responses to oviposition and feeding by herbivorous arthropods: a comparison, Entomol. Exp. Appl. 104, 181–192.

    Article  CAS  Google Scholar 

  • Hilker M., Meiners T. (2006) Early herbivore alert: Insect eggs induce plant defence, J. Chem. Ecol. 32, 1379–1397.

    Article  PubMed  CAS  Google Scholar 

  • Hodek I. (1959) The influence of aphid species as food for the ladybirds Coccinella 7-punctata L. and Adalia bipunctata L., in: The Ontogeny of Insects, Symposium on the Ontogenetic Development of Insects, Prague. Academic Press, London-New York, pp. 314–316.

    Google Scholar 

  • Hokkanen H.M.T. (1991) Trap cropping in pest management, Annu. Rev. Entomol. 36, 119–138.

    Article  Google Scholar 

  • Hokkanen H.M.T., Wearing C.H. (1996) Assessing the risk of pest resistance evolution to Bacillus thuringiensis engineered into crop plants: a case study of oilseed rape, Field Crop. Res. 45, 171–179.

    Google Scholar 

  • Hong C.P., Kwon S.J., Kim J.S., Yang T.J., Park B.S., Lim Y.P. (2008) Progress in understanding and sequencing the genome of Brassica rapa, Int. J. Plant Genomics, DOI: 10.1155/2008/582837.

    PubMed  Google Scholar 

  • Hopkins A.D. (1917) A discussion of C.G. Hewitt’s paper on “Insect Behaviour”, J. Entomol. 10, 92–93.

    Google Scholar 

  • Hopkins R.J., Birch A.N.E., Griffiths D.W., Baur R., Städler E., McKinlay R.G. (1997) Leaf surface compounds and oviposition preference of turnip root fly Delia floralis: The role of glucosinolate and nonglucosinolate compounds, J. Chem. Ecol. 23, 629–643.

    Article  CAS  Google Scholar 

  • Hopkins R.J., Griffiths D.W., Birch A.N.E., McKinlay R.G. (1998) Influence of increasing herbivore pressure on modification of glucosinolate content of swedes (Brassica napus spp. rapifera), J. Chem. Ecol. 24, 2003–2019.

    Article  CAS  Google Scholar 

  • Hopkins R.J., Wright F., Birch A.N.E., McKinlay R.G. (1999) The decision to reject an oviposition site: sequential analysis of the post-alighting behaviour of Delia floralis, Physiol. Entomol. 24, 41–50.

    Google Scholar 

  • Hopkins R.J., Van Dam N.M., Van Loon J.J. (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions, Annu. Rev. Entomol. 54, 57–83.

    Article  PubMed  CAS  Google Scholar 

  • Hossain M.A., Maiti M.K., Basu A., Sen S., Ghosh A.K., Sen S.K. (2006) Transgenic expression of onion leaf lectin gene in Indian Mustard offers protection against aphid colonization, Crop Sci. 46, 2022–2032.

    Article  CAS  Google Scholar 

  • Höglund A.S., Lenman M., Falk A., Rask L. (1991) Distribution of myrosinase in rapeseed tissues, Plant Physiol. 95, 213–221.

    Article  PubMed  Google Scholar 

  • Huang X., Renwick J.A.A. (1993) Differential selection of host plants by two Pieris species: the role of oviposition stimulants and deterrents, Entomol. Exp. Appl. 68, 59–69.

    Article  Google Scholar 

  • Huang X., Renwick J.A.A. (1994) Relative activities of glucosinolates as oviposition stimulants for Pieris rapae and P. napi oleracea, J. Chem. Ecol. 20, 1025–1037.

    Article  CAS  Google Scholar 

  • Hudson M.E., Bruggink T., Chang S.H., Yu W., Han B., Wang X., Toorn P.V.D., Zhu T. (2007) Analysis of gene expression during Brassica seed germination using a cross-specific microarray platform, Crop Sci. 47, 96–112.

    Article  Google Scholar 

  • Hughes P.R., Renwick J.A.A., Lopez K.D. (1997) New oviposition stimulants for the diamondback moth in cabbage, Entomol. Exp. Appl. 85, 281–283.

    Article  CAS  Google Scholar 

  • Hurter J., Ramp T., Patrian B., Städler E., Roessingh P., Baur R., De Jong R., Nielsen J.K., Winkler T., Richter W.J., Muller D., Ernst B. (1999) Oviposition stimulants for the cabbage root fly: isolation from cabbage leaves, Phytochemistry 51, 377–382.

    Article  CAS  Google Scholar 

  • Husebye H., Chadchawan S., Winge P., Thangstad O.P., Bones A.M. (2002) Guard cell- and phloem idioblast-specific expression of thioglucoside glucohydrolase 1 (myrosinase) in Arabidopsis, Plant Physiol. 128, 1180–1188.

    Article  PubMed  CAS  Google Scholar 

  • Husebye H., Arzt S., Burmeister W.P., Hartel F.V., Brandt A., Rossiter J.T., Bones A.M. (2005) Crystal structure at 1.1 Å resolution of an insect myrosinase from Brevicoryne brassicae shows its close relationship to beta-glucosidases, Insect Biochem. Molec. 35, 1311–1320.

    CAS  Google Scholar 

  • Jin R.G., Liu Y.B., Tabashnik B.E., Borthakur D. (2000) Development of transgenic cabbage (Brassica oleracea var. capitata) for insect resistance by Agrobacterium tumefaciens-mediated transformation, In Vitro Cell. Dev. B. 36, 231–237.

    CAS  Google Scholar 

  • Johansen N.S. (1997) Mortality of eggs, larvae and pupae and larval dispersal of the cabbage moth, Mamestrabrassicae, in white cabbage in South-Eastern Norway, Entomol. Exp. Appl. 83, 347–360.

    Article  Google Scholar 

  • Jones A.M.E., Bridges M., Bones A.M., Cole R., Rossiter J.T. (2001) Purification and characterisation of a non-plant myrosinase from the cabbage aphid Brevicoryne brassicae (L.), Insect Biochem. Molec. 31, 1–5.

    CAS  Google Scholar 

  • Jones A.M.E., Winge P., Bones A.M., Cole R., Rossiter J.T. (2002) Characterization and evolution of a myrosinase from the cabbage aphid Brevicoryne brassicae, Insect Biochem. Molec. 32, 275–284.

    CAS  Google Scholar 

  • Jones D.A., Takemoto D. (2004) Plant innate immunity - direct and indirect recognition of general and specific pathogen-associated molecules, Curr. Opin. Immunol. 16, 48–62.

    Article  PubMed  CAS  Google Scholar 

  • Jyoti J.L., Shelton A.M., Earle E.D. (2001) Identifying sources and mechanisms of resistance in crucifers for control of cabbage maggot (Diptera: Anthomyiidae), J. Econ. Entomol. 94, 942–949.

    Article  PubMed  CAS  Google Scholar 

  • Jönsson M., Anderson P. (2007) Emission of oilseed rape volatiles after pollen beetle infestation; behavioural and electrophysiological responses in the parasitoid Phradis morionellus, Chemoecology 17, 201–207.

    Article  CAS  Google Scholar 

  • Jönsson M., Lindkvist A., Anderson P. (2005) Behavioural responses in three ichneumonid pollen beetle parasitoids to volatiles emitted from different phenological stages of oilseed rape, Entomol. Exp. Appl. 115, 363–369.

    Article  Google Scholar 

  • Kanrar S., Venkateswari J., Kirti P.B., Chopra, V.L. (2002) Transgenic Indian mustard (Brassica juncea) with resistance to the mustard aphid (Lipaphis erysimi Kalt.), Plant Cell Rep. 20, 976–981.

    Article  CAS  Google Scholar 

  • Karban R., Baldwin I.T. (1997) Induced resonses to herbivory, Chicago University Press, Chicago, IL, USA.

    Google Scholar 

  • Karimzadeh J., Wright D.J. (2008) Bottom-up cascading effects in a tritrophic system: interactions between plant quality and host-parasitoid immune responses, Ecol. Entomol. 33, 45–52.

    Google Scholar 

  • Karowe D.N., Schoonhoven L.M. (1992) Interactions among three trophic levels: the influence of host plant on performance of Pieris brassicae and its parasitoid Cotesia glomerata, Entomol. Exp. Appl. 62, 241–241.

    Article  Google Scholar 

  • Kazachkova N.I. (2007) Genotype analysis and studies of pyrethroid resistance of the oilseed rape (Brassica napus) insect pest-pollen beetle (Meligethes aeneus), Doctoral thesis, Faculty of Natural Resources and Agricultural Sciences, Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Uppsala.

    Google Scholar 

  • Kazana E., Pope T.W., Tibbles L., Bridges M., Pickett J.A., Bones A.M., Powell G., Rossiter J.T. (2007) The cabbage aphid: a walking mustard oil bomb, Proc. R. Soc. Lond. B 274, 2271–2277.

    Article  CAS  Google Scholar 

  • Keiichi H. (1995) Chemical basis of differential oviposition by lepidopterous insects, Arch. Insect Biochem. Physiol. 30, 1–23.

    Article  Google Scholar 

  • Kelly P.J., Bones A., Rossiter J.T. (1998) Sub-cellular immunolocalization of the glucosinolate sinigrin in seedlings of Brassica juncea, Planta 206, 370–377.

    Article  PubMed  CAS  Google Scholar 

  • Kessler A., Baldwin I.T. (2002) Plant responses to insect herbivory: The emerging molecular analysis, Annu. Rev. Plant Biol. 53, 299–328.

    Article  PubMed  CAS  Google Scholar 

  • Khattab H. (2007) The defense mechanism of cabbage plant against phloem-sucking aphid (Brevicorynebrassicae L.), Aust. J. Basic Appl. Sci. 1, 56–62.

    CAS  Google Scholar 

  • Kift N.B., Ellis P.R., Tatchell G.M., Pink D.A.C. (2000) The influence of genetic background on resistance to the cabbage aphid (Brevicoryne brassicae) in kale (Brassica oleracea var. acephala), Ann. Appl. Biol. 136, 189–195.

    Article  Google Scholar 

  • Kim J.H., Jander G. (2007) Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate, Plant J. 49, 1008–1019.

    Article  PubMed  CAS  Google Scholar 

  • Kirkegaard J.A., Sarwar M. (1998) Biofumigation potential of brassicas I. Variation in glucosinolate profiles of diverse fieldgrown brassicas, Plant Soil 201, 71–89.

    CAS  Google Scholar 

  • Kirk-Spriggs A.H. (1996) Pollen beetles. Coleoptera: Kateretidae and Nitidulidae: Meligethinae, Handbooks for the identification of British insects, Royal Entomological Society, London, UK.

    Google Scholar 

  • Kishimoto K., Matsui K., Ozawa R., Takabayashi J. (2005) Volatile C6-aldehydes and allo-ocimene activate defense genes and induce resistance against Botrytis cinerea in Arabidopsis thaliana, Plant Cell Physiol. 46, 1093–1102.

    Article  PubMed  CAS  Google Scholar 

  • Kissen R., Rossiter J.T., Bones A.M. (2009) The “mustard oil bomb”: not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system, Phytochem. Rev. 8, 69–86.

    CAS  Google Scholar 

  • Klijnstra J.W., Roessingh P. (1986) Perception of the oviposition deterring pheromone by tarsal and abdominal contact chemoreceptors in Pieris brassicae, Entomol. Exp. Appl. 40, 71–79.

    Article  CAS  Google Scholar 

  • Klingen I., Hajek A., Meadow R., Renwick J.A.A. (2002a) Effect of brassicaceous plants on the survival and infectivity of insect pathogenic fungi, BioControl 47, 411–425.

    Article  CAS  Google Scholar 

  • Klingen I., Meadow R., Aandal T. (2002b) Mortality of Delia floralis, Galleria mellonella and Mamestra brassicae treated with insect pathogenic hyphomycetous fungi, J. Appl. Entomol. 126, 231–237.

    Article  Google Scholar 

  • Knodel J.J., Olsen D.L. (2002) Crucifer flea beetle. Biology and integrated pest management in canola, E-1234, NDSU Extension Service, North Dakota State University, USA, http://www.ag.ndsu.edu/pubs/plantsci/pests/e1234.pdf.

  • Knodel J., Ganehiarachchi M. (2008) Bertha armyworm in canola. Biology and integrated pest management in canola, E-1347, NDSU Extension Service, North Dakota State University, USA, http://www.ag.ndsu.edu/pubs/plantsci/pests/e1347.pdf.

  • Koritsas V.M., Lewis J.A., Fenwick G.R. (1991) Glucosinolate responses of oilseed rape, mustard and kale to mechanical wounding and infestation by cabbage stem flea beetle (Psylliodes chrysocephala), Ann. Appl. Biol. 118, 209–221.

    Article  Google Scholar 

  • Koroleva O.A., Davies A., Deeken R., Thorpe M.R., Tomos A.D., Hedrich R. (2000) Identification of a new glucosinolate-rich cell type in Arabidopsis flower stalk, Plant Physiol. 124, 599–608.

    Article  PubMed  CAS  Google Scholar 

  • Kuśnierczyk A., Winge P., Midelfart H., Armbruster W.S., Rossiter J.T., Bones A.M. (2007) Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicorynebrassicae, J. Exp. Bot. 58, 2537–2552.

    Article  PubMed  CAS  Google Scholar 

  • Kuśnierczyk A., Winge P., Jrstad T.S., Troczyńska J., Rossiter J.T., Bones A.M. (2008) Towards global understanding of plant defence against aphids -timing and dynamics of early Arabidopsis defence responses to cabbage aphid (Brevicoryne brassicae) attack, Plant Cell Environ. 31, 1097–1115.

    Article  PubMed  CAS  Google Scholar 

  • Labana K.S., Gupta M.L. (1993) Importance and Origin, in: Labana K.S., Banga S.S., Banga S.K. (Eds.), Breeding Oilseed Brassicas, Springer-Verlag, Berlin, Germany, pp. 1–7.

    Google Scholar 

  • Lamb R.J. (1989) Entomology of oilseed Brassica crops, Annu. Rev. Entomol. 34, 211–229.

    Article  Google Scholar 

  • Landolt P. (1993) Effects of host plant leaf damage on cabbage looper moth attraction and oviposition, Entomol. Exp. Appl. 67, 79–85.

    Article  Google Scholar 

  • Larkin R.P., Griffin T.S. (2007) Control of soilborne potato diseases using Brassica green manures, Crop Prot. 26, 1067–1077.

    Article  Google Scholar 

  • Lauro N., Kuhlmann U., Mason P.G., Holliday N.J. (2005) Interaction of a solitary larval endoparasitoid Microplitis mediator with its host Mamestra brassicae: host acceptance and host suitability, J. Appl. Entomol. 129, 567–573.

    Article  Google Scholar 

  • Law J.H., Regnier F.E. (1971) Pheromones, Annu. Rev. Biochem. 40, 533–548.

    Article  PubMed  CAS  Google Scholar 

  • LeCoz C., Ducombs G. (2006) Plants and plant products, in: Frosch P.J., Menne T., Lepottevin J.P. (Eds.), Contact Dermatitis, 4th ed., Springer Verlag, Berlin-Heidelberg, Germany, pp. 751–800.

    Chapter  Google Scholar 

  • Leckband G., Frauen M., Friedt W. (2002) NAPUS 2000. Rapeseed (Brassica napus) breeding for improved human nutrition, Food Res. Int. 35, 273–278.

    Google Scholar 

  • Lehrman A. (2007) Oilseed rape transformed with a pea lectin gene: Target and non-target insects, plant competition, and farmer attitudes. Doctoral Thesis, Faculty of Natural Resources and Agricultural Sciences Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.

    Google Scholar 

  • Lenman M., Falk A., Rodin J., Höglund A.S., Ek B., Rask L. (1993) Differential expression of myrosinase gene families, Plant Physiol. 103, 703–711.

    Article  PubMed  CAS  Google Scholar 

  • Lewis W.J., Van Lenteren J.C., Phatak S.C., Tumlinson J.H. (1997) A total system approach to sustainable pest management, Proc. Natl Acad. Sci. (USA) 94, 12243–12248.

    Article  CAS  Google Scholar 

  • Li Q., Eigenbrode S.D., Stringam G.R., Thiagarajah M.R. (2000) Feeding and growth of Plutella xylostella and Spodopteraeridania on Brassica juncea with varying glucosinolate concentrations and myrosinase activities, J. Chem. Ecol. 26, 2401–2419.

    Article  CAS  Google Scholar 

  • Liu C.W., Lin C.C., Yiu J.C., Chen J.J.W., Tseng M.J. (2008) Expression of a Bacillus thuringiensis toxin (cry1Ab) gene in cabbage (Brassica oleracea L. var. capitata L.) chloroplasts confers high insecticidal efficacy against Plutella xylostella, Theor. Appl. Genet. 117, 75–88.

    Article  PubMed  CAS  Google Scholar 

  • Lou P., Zhao J., He H., Hanhart C., Del Carpio D.P., Verkerk R., Custers J., Koornneef M., Bonnema G. (2008) Quantitative trait loci for glucosinolate accumulation in Brassica rapa leaves, New Phytol. 179, 1017–1032.

    Article  PubMed  CAS  Google Scholar 

  • Ma W.C., Schoonhoven L.M. (1973) Tarsal contact chemosensory hairs of the large butterfly Pieris brassicae and their possible role in oviposition behaviour, Entomol. Exp. Appl. 16, 343–357.

    Article  Google Scholar 

  • MacLeod A.J., Rossiter J.T. (1985) The occurrence and activity of epithiospecifier protein in some cruciferae seeds, Phytochemistry 24, 1895–1898.

    Article  CAS  Google Scholar 

  • Mandal S.M.A., Mishra R.K., Patra A.K. (1994) Yield loss in rapeseed and mustard due to aphid infestation in respect of different cultivars and dates of sowing, Orissa J. Agric. Res. 7, 58–62.

    Google Scholar 

  • Marazzi C., Patrian B., Städler E. (2004a) Secondary metabolites of the leaf surface affected by sulphur fertilisation and perceived by the diamondback moth, Chemoecology 14, 81–86.

    Article  CAS  Google Scholar 

  • Marazzi C., Patrian B., Städler E. (2004b) Secondary metabolites of the leaf surface affected by sulphur fertilisation and perceived by the cabbage root fly, Chemoecology 14, 87–94.

    Article  CAS  Google Scholar 

  • Matthiessen J.N., Shackleton M.A. (2005) Biofumigation: environmental impacts on the biological activity of diverse pure and plant-derived isothiocyanates, Pest Manag. Sci. 61, 1043–1051.

    CAS  Google Scholar 

  • Mattiacci L., Dicke M., Posthumus M.A. (1994) Induction of parasitoid attracting synomone in brussels sprouts plants by feeding of Pieris brassicae larvae: Role of mechanical damage and herbivore elicitor, J. Chem. Ecol. 20, 2229–2247.

    Article  CAS  Google Scholar 

  • Mattiacci L., Rudelli S., Rocca B.A., Genini S., Dorn S. (2001) Systemically-induced response of cabbage plants against a specialist herbivore, Pieris brassicae, Chemoecology 11, 167–173.

    Article  Google Scholar 

  • MBTOC (1997) Report of the Methyl Bromide Technical Options Committee, Nairobi, Kenya, United Nations Environmental Programme UNEP, 221 p.

    Google Scholar 

  • Mello M.O., Silva-Filho M.C. (2002) Plant-insect interactions: an evolutionary arms race between two distinct defense mechanisms, Braz. J. Plant Physiol. 14, 71–81.

    Article  CAS  Google Scholar 

  • Mewis I., Tokuhisa J.G., Schultz J.C., Appel H.M., Ulrichs C., Gershenzon J. (2006) Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways, Phytochemistry 67, 2450–2462.

    Article  PubMed  CAS  Google Scholar 

  • Mithen R. (1992) Leaf glucosinolate profiles and their relationship to pest and disease resistance in oilseed rape, Euphytica 63, 71–83.

    Article  CAS  Google Scholar 

  • Monfort W.S., Csinos A.S., Desaeger J., Seebold K., Webster T.M., Diaz-Perez J.C. (2007) Evaluating Brassica species as an alternative control measure of root-knot nematode (M. incognita) in Georgia vegetable plasticulture, Crop Prot. 26, 1359–1368.

    Google Scholar 

  • Montesano M., Brader G., Palva E.T. (2003) Pathogen derived elicitors: searching for receptors in plants, Mol. Plant Pathol. 4, 73–79.

    CAS  Google Scholar 

  • Mossler M.A. (2005) Florida Crop/Pest Management Profile: Specialty Brassicas (Arrugula, Bok Choy, Chinese Broccoli, Chinese Mustard, Napa) PI-70, Pesticide Information Office, University of Florida, USA.

    Google Scholar 

  • Mudd A., Ferguson A.W., Blight M.M., Williams I.H., Scubla P., Solinas M., Clark S.J. (1997) Extraction, isolation, and composition of oviposition-deterring secretion of cabbage seed weevil Ceutorhynchus assimilis, J. Chem. Ecol. 23, 2227–2240.

    Article  CAS  Google Scholar 

  • Mulligan E.A., Ferry N., Jouanin L., Walters K.F., Port G.R., Gatehouse A.M. (2006) Comparing the impact of conventional pesticide and use of a transgenic pest-resistant crop on the beneficial carabid beetle Pterostichus melanarius, Pest Manag. Sci. 62, 999–1012.

    CAS  Google Scholar 

  • Mumm R., Posthumus M.A., Dicke M. (2008) Significance of terpenoids in induced indirect plant defence against herbivorous arthropods, Plant Cell Environ. 31, 575–585.

    Article  PubMed  CAS  Google Scholar 

  • Murchie A.K. Hume K.D. (2003) Evidence for monogeny in the brassica pod midge Dasineura brassicae, Entomol. Exp. Appl. 107, 237–241.

    Google Scholar 

  • Murchie A.K., Smart L.E., Williams I.H. (1997) Responses of Dasineura brassicae and its parasitoids Platygaster subuliformis and Omphale clypealis to field traps baited with organic isothiocyanates, J. Chem. Ecol. 23, 917–926.

    Article  Google Scholar 

  • Müller C., Arand K. (2007) Trade-offs in oviposition choice? Food-dependent performance and defence against predators of a herbivorous sawfly, Entomol. Exp. Appl. 124, 153–159.

    Article  Google Scholar 

  • Müller C., Brakefield P.M. (2003) Analysis of a chemical defense in sawfly larvae: easy bleeding targets predatory wasps in late summer, J. Chem. Ecol. 29, 2683–2694.

    Article  PubMed  Google Scholar 

  • Müller C., Sieling N. (2006) Effects of glucosinolate and myrosinase levels in Brassica juncea on a glucosinolate-sequestering herbivore – and vice versa, Chemoecology 16, 191–201.

    Article  CAS  Google Scholar 

  • Neveu N., Grandgirard J., Nenon J.P., Cortesero A.M. (2002) Systemic release of herbivore-induced plant volatiles by turnips infested by concealed root-feeding larvae Delia radicum L., J. Chem. Ecol. 28, 1717–1732.

    Article  PubMed  CAS  Google Scholar 

  • Nicolas S.D., Leflon M., Monod H., Eber F., Coriton O., Huteau V., Chèvre A.M., Jenczewski E. (2009) Genetic regulation of meiotic cross-overs between related genomes in Brassica napus haploids and hybrids, Plant Cell 21, 373–385.

    Article  PubMed  CAS  Google Scholar 

  • Noble R.R.P., Harvey S.G., Sams C.E. (2002) Toxicity of Indian mustard and allyl isothiocyanate to masked chafer beetle larvae, Plant Health Progress, DOI: 10.1094/PHP-2002-0610-01-RS.

    Google Scholar 

  • Noldus L.P.J.J., Van Lenteren J.C. (1985a) Kairomones for egg parasite Trichogramma evanescens, Westwood I. Effect of volatiles released by two of its hosts, Pieris brassicae L. and Mamestra brassicae L., J. Chem. Ecol. 11, 781–791.

    Article  CAS  Google Scholar 

  • Noldus L.P.J.J., Van Lenteren J.C. (1985b) Kairomones for egg parasite Trichogramma evanescens, Westwood II. Effect of contact chemicals produced by two of its hosts, Pieris brassicae L. and Pieris rapae L., J. Chem. Ecol. 11, 793–798.

    Article  CAS  Google Scholar 

  • Nottingham S.F., Coaker T.H. (1985) The olfactory response of cabbage root fly Delia radicum to the host plant volatile allylisothiocyanate, Entomol. Exp. Appl. 39, 307–316.

    Article  CAS  Google Scholar 

  • Nürnberger T., Brunner F. (2002) Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen-associated molecular patterns, Curr. Opin. Plant Biol. 5, 318–324.

    Article  PubMed  Google Scholar 

  • Ode P.J. (2006) Plant chemistry and natural enemy fitness: Effects on herbivore and natural enemy interactions, Ann. Rev. Entomol. 51, 163–185.

    Article  CAS  Google Scholar 

  • Ômura H., Honda K., Hayashi N. (1999) Chemical and chromatic bases for preferential visiting by the cabbage butterfly Pieris rapae to rape flowers, J. Chem. Ecol. 25, 1895–1906.

    Article  Google Scholar 

  • Paré P.W., Tumlinson J.H. (1999) Plant volatiles as a defense against insect herbivores, Plant Physiol. 121, 325–332.

    Article  PubMed  Google Scholar 

  • Pedras M.S.C., Okanga F.I., Zaharia I.L., Khan A.Q. (2000) Phytoalexins from crucifers: synthesis, biosynthesis, and biotransformation, Phytochemistry 53, 161–176.

    Article  PubMed  CAS  Google Scholar 

  • Pedras M.S.C., Zheng Q.A., Gadagi R.S. (2007a) The first naturally occurring aromatic isothiocyanates, rapalexins A and B, are cruciferous phytoalexins, Chem. Commun. 4, 368–370.

    Google Scholar 

  • Pedras M.S.C., Gadagi R.S., Jha M., Sarma-Mamillapalle V.K. (2007b) Detoxification of the phytoalexin brassinin by isolates of Leptosphaeria maculans pathogenic on brown mustard involves an inducible hydrolase, Phytochemistry 68, 1572–1578.

    Article  PubMed  CAS  Google Scholar 

  • Pickett J.A., Wadhams L.J., Woodcock C.M. (1997) Developing sustainable pest control from chemical ecology, Agr. Ecosyst. Environ. 64, 149–156.

    Article  CAS  Google Scholar 

  • Pickett J.A., Rasmussen H.B., Woodcock C.M., Matthes M., Napier J.A. (2003) Plant stress signalling: understanding and exploiting plant-plant interactions, Biochem. Soc. T. 31, 123–127.

    Article  CAS  Google Scholar 

  • Picoaga A., Cartea M.E., Soengas P., Monetti L., Ordás A. (2003) Resistance of kale populations to lepidopterous pests in northwestern Spain, J. Econ. Entomol. 96, 143–147.

    Article  PubMed  CAS  Google Scholar 

  • Pivnick K.A., Lamb R.J., Reed D. (1992) Response of flea beetles, Phyllotreta spp., to mustard oils and nitriles in field trapping experiments, J. Chem. Ecol. 18, 863–873.

    Article  CAS  Google Scholar 

  • Pivnick K.A., Jarvis B.J., Slater G.P. (1994) Identification of olfactory cues used in host-plant finding by diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), J. Chem. Ecol. 20, 1407–1427.

    Article  CAS  Google Scholar 

  • Ploeg A. (2008) Biofumigation to manage plant-parasitic nematodes, in: Ciancio A., Mukerji K.G. (Eds.), Integrated Management of Plant Pests and Diseases, Vol. 2 - Integrated Management and Biocontrol of Vegetable and Grain Crops Nematodes, Springer, The Netherlands, pp. 239–248.

    Google Scholar 

  • Pontoppidan B., Hopkins R., Rask L. (2003) Infestation by cabbage aphid (Brevicoryne brassicae) on oilseed rape (Brassica napus) causes a long lasting induction of the myrosinase system, Entomol. Exp. Appl. 109, 55–62.

    Article  Google Scholar 

  • Pope T.W., Kissen R., Grant M., Pickett J.A., Rossiter J.T., Powell G. (2008) Comparative innate responses of the aphid parasitoid Diaeretiella rapae to alkenyl glucosinolate derived isothiocyanates, nitriles and epithionitriles, J. Chem. Ecol. 34, 1302–1310.

    Article  PubMed  CAS  Google Scholar 

  • Popova T. (1993) A study of antibiotic effects on cabbage cultivars on the cabbage moth Mamestra brassicae L. (Lepidoptera: Noctuidae), Entomol. Rev. 72, 125–132.

    Google Scholar 

  • Potter M.J., Davies K., Rathjen A.J. (1998) Suppressive impact of glucosinolates in Brassica vegetative tissues on root lesion nematode Pratylenchus neglectus, J. Chem. Ecol. 24, 67–80.

    Article  CAS  Google Scholar 

  • Pratt C., Pope T., Powell G., Rossiter J. (2008) Accumulation of glucosinolates by the cabbage aphid Brevicoryne brassicae as a defense against two coccinellid species, J. Chem. Ecol. 34, 323–329.

    Article  PubMed  CAS  Google Scholar 

  • Pyke B., Rice M., Sabine B., Zalucki M.P. (1987) The push-pull strategy - behavioural control of Heliothis, Aust. Cotton Grow, May–July, 7–9.

    Google Scholar 

  • Quaglia F., Rossi E., Petacchi R., Taylor C.E. (1993) Observations on an infestation by green peach aphids (Homoptera: Aphididae) on greenhouse tomatoes in Italy, J. Econ. Entomol. 86, 1019–1025.

    Google Scholar 

  • Rana J. (2005) Performance of Lipaphis erysimi (Homoptera: Aphididae) on different Brassica species in a tropical environment, J. Pestic. Sci. 78, 155–160.

    Article  Google Scholar 

  • Rangkadilok N., Nicolas M.E., Bennett R.N., Premier R.R., Eagling D.R., Taylor P.W.J. (2002) Developmental changes of sinigrin and glucoraphanin in three Brassica species (Brassica nigra, Brassica juncea and Brassicaoleracea var. italica), Sci. Hortic. 96, 11–26.

    Article  CAS  Google Scholar 

  • Rask L., Andreasson E., Ekbom B., Eriksson S., Pontoppidan B., Meijer J. (2000) Myrosinase: gene family evolution and herbivore defence in Brassicaceae, Plant Mol. Biol. 42, 93–113.

    CAS  Google Scholar 

  • Rausch T., Wachter A. (2005) Sulfur metabolism: a versatile platform for launching defence operations, Trends Plant Sci. 10, 503–509.

    Article  PubMed  CAS  Google Scholar 

  • Raymer P.L. (2002) Canola: An emerging oilseed crop, in: Janwick J., Whipkey A. (Eds.), Trends in new crops and new uses, ASHS Press, Alexandria, VA, USA.

    Google Scholar 

  • Reddy G.V.P., Holopainen J.K., Guerrero A. (2002) Olfactory responses of Plutella xylostella natural enemies to host pheromone, larval fraa, and green leaf cabbage volatiles, J. Chem. Ecol. 28, 131–143.

    Article  PubMed  CAS  Google Scholar 

  • Reddy G.V.P., Tossavainen P., Nerg A.M., Holopainen J.K. (2004) Elevated atmospheric CO2 affects the chemical quality of Brassica plants and the growth rate of the specialist Plutella xylostella, but not the generalist Spodoptera littoralis, J. Agr. Food Chem. 52, 4185–4191.

    Article  CAS  Google Scholar 

  • Renwick J., Haribal M., Gouinguené S., Städler E. (2006) Isothiocyanates stimulating oviposition by the diamondback moth, Plutella xylostella, J. Chem. Ecol. 32, 755–766.

    Article  PubMed  CAS  Google Scholar 

  • Renwick J.A.A. (2001) Variable diets and changing taste in plant-insect relationships, J. Chem. Ecol. 27, 1063–1076.

    Article  PubMed  CAS  Google Scholar 

  • Renwick J.A.A., Lopez K. (1999) Experience-based food consumption by larvae of Pieris rapae: addiction to glucosinolates, Entomol. Exp. Appl. 91, 51–58.

    Article  CAS  Google Scholar 

  • Renwick J.A.A., Radke C.D. (1980) An oviposition deterrent associated with frass from feeding larvae of the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae), Environ. Entomol. 9, 318–320.

    Google Scholar 

  • Renwick J.A.A., Radke C.D. (1981) Host plant constituents as oviposition deterrents for the cabbage looper, Entomol. Exp. Appl. 30, 201–204.

    Article  Google Scholar 

  • Renwick J.A.A., Radke C.D. (1985) Constituents of host- and non-host plants deterring oviposition by the cabbage butterfly, Pieris rapae, Entomol. Exp. Appl. 39, 21–26.

    Article  Google Scholar 

  • Renwick J.A.A., Radke C.D., Sachdev-Gupta K., Städler E. (1992) Leaf surface chemicals stimulating oviposition by Pieris rapae (Lepidoptera: Pieridae) on cabbage, Chemoecology 3, 33–38.

    Article  CAS  Google Scholar 

  • Riaño-Pachón D.M., Nagel A., Neigenfind J., Wagner R., Basekow R., Weber E., Mueller-Roeber B., Diehl S., Kersten B. (2009) GabiPD: The GABI primary database – a plant integrative ’omics’ database, Nucleic Acids Res. 37, D954–959.

    Article  PubMed  CAS  Google Scholar 

  • Rodman J.E., Chew F.S. (1980) Phytochemical correlates of herbivory in a community of native and naturalized cruciferae, Biochem. Syst. Ecol. 8, 43–50.

    Article  CAS  Google Scholar 

  • Rodriguez V.M., Cartea M.E., Padilla G., Velasco P., Ordas A. (2005) The nabicol: A horticultural crop in northwestern Spain, Euphytica 142, 237–246.

    Article  Google Scholar 

  • Roessingh P., Städler E. (1990) Foliar form, colour and surface characteristics influence oviposition behaviour in the cabbage root fly Delia radicum, Entomol. Exp. Appl. 57, 93–100.

    Article  Google Scholar 

  • Roessingh P., Städler E., Fenwick G., Lewis J., Nielsen J., Hurter J., Ramp T. (1992) Oviposition and tarsal chemoreceptors of the cabbage root fly are stimulated by glucosinolates and host plant extracts, Entomol. Exp. Appl. 65, 267–282.

    Article  CAS  Google Scholar 

  • Roessingh P., Städler E., Baur R., Hurter J., Ramp T. (1997) Tarsal chemoreceptors and oviposition behaviour of the cabbage root fly (Delia radicum) sensitive to fractions and new compounds of host-leaf surface extracts, Physiol. Entomol. 22, 140–148.

    CAS  Google Scholar 

  • Rohloff J., Bones A.M. (2005) Volatile profiling of Arabidopsis thaliana – Putative olfactory compounds in plant communication, Phytochemistry 66, 1941–1955.

    Article  PubMed  CAS  Google Scholar 

  • Rojas J.C., Wyatt T.D. (1999) The role of pre- and post-imaginal experience in the host-finding and oviposition behaviour of the cabbage moth, Physiol. Entomol. 24, 83–89.

    Google Scholar 

  • Rojas J.C., Tristram D., Wyatt T.D., Birch M.C. (2000) Flight and oviposition behavior toward different host plant species by the cabbage moth, Mamestra brassicae (L.) (Lepidoptera: Noctuidae), J. Insect Behav. 13, 247–254.

    Article  Google Scholar 

  • Rojas J.C., Wyatt T.D., Birch M.C. (2001) Oviposition by Mamestra brassicae (L.) (Lep., Noctuidae) in relation to age, time of day and host plant, J. Appl. Entomol. 125, 161–163.

    Article  Google Scholar 

  • Ross-Craig S. (1949) Drawings of British plants: Part III. Cruciferae, G. Bells and Sons Ltd, London, UK.

    Google Scholar 

  • Rossiter J.T., Jones A.M., Bones A.M. (2003) A novel myrosinase-glucosinolate defense system in cruciferous specialist aphids, Recent Adv. Phytochem. 37, 127–142.

    CAS  Google Scholar 

  • Rouxel T., Kollmann A., Boulidard L., Mithen R. (1991) Abiotic elicitation of indole phytoalexins and resistance to Leptosphaeria maculans within Brassiceae, Planta 184, 271–278.

    Article  CAS  Google Scholar 

  • Ruther J., Thiemann K. (1997) Response of the pollen beetle Meligethes aeneus to volatiles emitted by intact plants and conspecifics, Entomol. Exp. Appl. 84, 183–188.

    Article  CAS  Google Scholar 

  • Ryan M.F. (2002) Plant chemicals in pest control, in: Ryan M.F. (Ed.), Insect Chemoreception: Fundamental and Applied, Springer, The Netherlands, pp. 193–222.

    Google Scholar 

  • Salem S.A., Abou-Ela R.G., Matter M.M., El-Kholy M.Y. (2007) Entomocidal effect of Brassica napus extracts on two store pests, Sitophilus oryzae (L.) and Rhizopertha dominica (Fab.) (Coleoptera), J. Appl. Sci. Res. 3, 317–322.

    Google Scholar 

  • Sanders D. (2005) Growers Guidelines. American Vegetable Grower, October 2005 University of California SAREP Online Cover Crop Database: Mustards, http://www.sarep.ucdavis.edu.

  • Sang J.P., Minchinton I.R., Johnstone P.K., Truscott R.J.W. (1984) Glucosinolate profiles in the seed, root and leaf tissue of cabbage, mustard, rapeseed, radish and swede, Can. J. Plant Sci. 64, 77–93.

    Article  CAS  Google Scholar 

  • Sarfraz M., Dosdall L.M., Keddie B.A. (2006) Diamondback moth-host plant interactions: Implications for pest management, Crop Prot. 25, 625–639.

    Article  CAS  Google Scholar 

  • Sarfraz M., Dosdall L.M., Keddie B.A. (2007) Resistance of some cultivated Brassicaceae to infestations by Plutella xylostella (Lepidoptera: Plutellidae), J. Econ. Entomol. 100, 215–224.

    Article  PubMed  CAS  Google Scholar 

  • Sarwar M., Kirkegaard J.A., Wong P.T.W., Desmarchelier J.M. (1998) Biofumigation potential of brassicas, III. In vitro toxicity of isothiocyanates to soil-borne fungal pathogens, Plant Soil 201, 103–112.

    Article  CAS  Google Scholar 

  • Sato Y., Ohsaki N. (2004) Response of the wasp (Cotesia glomerata) to larvae of the large white butterfly (Pieris brassicae), Ecol. Res. 19, 445–449.

    Google Scholar 

  • Schoonhoven L.M. (1990) Host-marking pheromones in Lepidoptera, with special reference to two Pieris spp., J. Chem. Ecol. 16, 3043–3052.

    Article  CAS  Google Scholar 

  • Schroeder N.C., Dumbleton A.J. (2001) Thiamethoxam seed coating on rape seed for the control of cabbage aphid Brevicoryne brassicae (L.), N. Z. Plant Protect. 54, 240–243.

    Google Scholar 

  • Schuler T.H., Denholm I., Jouanin L., Clark S.J., Clark A.J., Poppy G.M. (2001) Population-scale laboratory studies of the effect of transgenic plants on nontarget insects, Mol. Ecol. 10, 1845–1853.

    CAS  Google Scholar 

  • Schuler T.H., Denholm I., Clark S.J., Stewart C.N., Poppy G.M. (2004) Effects of Bt plants on the development and survival of the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) in susceptible and Bt-resistant larvae of the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae), J. Insect Physiol. 50, 435–443.

    Article  CAS  Google Scholar 

  • Sekhon B.S. (1999) Population dynamics of Lipaphis erysimi and Myzus persicae on different species of Brassica, 10th International Rapeseed Congress, Canberra, Australia.

    Google Scholar 

  • Sekhon B.S., Åhman I. (1993) Insect resistance with special reference to mustard aphid, in: Labana K.S., Banga S.S., Banga S.K. (Eds.), Breeding Oilseed Brassicas, Springer-Verlag, Berlin, Germany, pp. 206–217.

    Google Scholar 

  • Shelton A.M., Badenes-Perez F.R. (2006) Concepts and applications of trap cropping in pest management, Annu. Rev. Entomol. 51, 285–308.

    Article  PubMed  CAS  Google Scholar 

  • Shelton A.M., Hatch S.L., Zhao J.Z., Chen M., Earle E.D., Cao J. (2008) Suppression of diamondback moth using Bt-transgenic plants as a trap crop, Crop Prot. 27, 403–409.

    Article  Google Scholar 

  • Shiojiri K., Takabayashi J., Yano S., Takafuji A. (2000) Herbivore-species-specific interactions between crucifer plants and parasitic wasps (Hymenoptera: Braconidae) that are mediated by infochemicals present in areas damaged by herbivores, Appl. Entomol. Zool. 35, 519–524.

    Article  Google Scholar 

  • Shiojiri K., Takabayashi J., Yano S., Takafuji A. (2002) Oviposition preferences of herbivores are affected by tritrophic interaction webs, Ecol. Lett. 5, 186–192.

    Google Scholar 

  • Sibanda T., Dobson H.M., Cooper J.F., Manyangarirwa W., Chiimba W. (2000) Pest management challenges for smallholder vegetable farmers in Zimbabwe, Crop Prot. 19, 807–815.

    Article  Google Scholar 

  • Silverstein K.A.T., Graham M.A., Paape T.D., VandenBosch K.A. (2005) Genome organization of more than 300 defensin-like genes in Arabidopsis, Plant Physiol. 138, 600–610.

    Article  PubMed  CAS  Google Scholar 

  • Silverstein K.A.T., Moskal Jr. W.W., Wu H.C., Underwood B.A., Graham M.A., Town C.D., VandenBosch K.A. (2007) Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants, Plant J. 51, 262–280.

    Article  PubMed  CAS  Google Scholar 

  • Simmonds M., Blaney W., Mithen R., Birch A., Lewis J. (1994) Behavioural and chemosensory responses of the turnip root fly (Delia floralis) to glucosinolates, Entomol. Exp. Appl. 71, 41–57.

    Article  CAS  Google Scholar 

  • Smallegange R., Van Loon J., Blatt S., Harvey J., Agerbirk N., Dicke M. (2007) Flower vs. leaf feeding by Pieris brassicae: Glucosinolate-rich flower tissues are preferred and sustain higher growth rate, J. Chem. Ecol. 33, 1831–1844.

    Article  PubMed  CAS  Google Scholar 

  • Smart L.E., Blight M.M. (1997) Field discrimination of oilseed Rape, Brassica napus volatiles by cabbage seed weevil, Ceutorhynchus assimilis, J. Chem. Ecol. 23, 2555–2567.

    Article  CAS  Google Scholar 

  • Smart L.E., Blight M.M. (2000) Response of the pollen beetle, Meligethes aeneus, to traps baited with volatiles from oilseed rape, Brassica napus, J. Chem. Ecol. 26, 1051–1064.

    Article  CAS  Google Scholar 

  • Smart L.E., Blight M.M., Hick A.J. (1997) Effect of visual cues and a mixture of isothiocyanates on trap capture of cabbage seed weevil, Ceutorhynchus assimilis, J. Chem. Ecol. 23, 889–902.

    Article  CAS  Google Scholar 

  • Smith B.J., Kirkegaard J.A. (2002) In vitro inhibition of soil microorganisms by 2-phenylethyl isothiocyanate, Plant Pathol. 51, 585–593.

    Article  CAS  Google Scholar 

  • Smith B.J., Kirkegaard J.A., Howe G.N. (2004) Impacts of Brassica break-crops on soil biology and yield of following wheat crops, Aust. J. Agr. Res. 55, 1–11.

    Article  Google Scholar 

  • Smith M.L. (2002) Research in Scottland - The Scottish Agricultural College (SAC): An overview, Pesticide Outlook, 59–60.

    Google Scholar 

  • Smith M.C. (2005) Plant Resistance to Arthropods – Molecular and conventional approaches, Chap. 2: Antixenosis - Adverse effects of resistance on arthropod behavior, Springer, Dordrecht, The Netherlands, pp. 19–63.

    Google Scholar 

  • Snapp S., Cichy K., O’Neil K. (2006) Mustards – A Brassica cover crop for Michigan, Extension Bulletin E-2956, Michigan State University Extension, USA.

    Google Scholar 

  • Snowdon R.J. (2007) Cytogenetics and genome analysis in Brassica crops, Chromosome Res. 15, 85–95.

    Article  PubMed  CAS  Google Scholar 

  • Snowdon R.J., Friedt W. (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities, Plant Breeding 123, 1–8.

    Article  CAS  Google Scholar 

  • Snowdon R.J., Luhs W., Friedt W. (2007) Oilseed rape, in: Kole C. (Ed.), Genome Mapping and Molecular Breeding in Plants, Vol. 2 Oilseeds, Springer-Verlag Berlin Heidelberg, Germany, pp. 55–114.

    Google Scholar 

  • Souckova H. (2006) Rape methyl-ester as a renewable energy resource in transport, Agr. Econ.-Czech. 52, 244–249.

    Google Scholar 

  • Steinberg S., Dicke M., Vet L.E.M. (1993) Relative importance of infochemicals from first and second trophic level in long-range host location by the larval parasitoid Cotesia glomerata, J. Chem. Ecol. 19, 47–59.

    Article  Google Scholar 

  • Suwabe K., Tsukazaki H., Iketani H. Hatakeyama K., Kondo M., Fujimura M., Nunome T., Fukuoka H., Hirai M., Matsumoto S. (2006) Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: The genetic origin of clubroot resistance, Genetics 173, 309–319.

    Google Scholar 

  • Svanem P., Bones A.M., Rossiter J.T. (1997) Metabolism of [α − 14C]-desulphophenethylglucosinolate in Nasturtium officinale, Phytochemistry 44, 1251–1255.

    Article  CAS  Google Scholar 

  • Tabashnik B.E. (1987) Plant secondary compounds as oviposition deterrents for cabbage butterfly, Pieris rapae (Lepidoptera: Pieridae), J. Chem. Ecol. 13, 309–316.

    Article  CAS  Google Scholar 

  • Takabayashi J., Dicke M. (1996) Plant-carnivore mutualism through herbivore-induced carnivore attractants, Trends Plant Sci. 1, 109–113.

    Article  Google Scholar 

  • Talekar N.S., Shelton A.M. (1993) Biology, ecology, and management of the diamondback moth, Annu. Rev. Entomol. 38, 275–301.

    Article  Google Scholar 

  • Tanaka S., Nishida T., Ohsaki N. (2007) Sequential rapid adaptation of indigenous parasitoid wasps to the invasive butterfly Pieris brassicae, Evolution 61, 1791–1802.

    Article  PubMed  Google Scholar 

  • Thangstad O.P., Iversen T.H., Slupphaug G., Bones A. (1990) Immunocytochemical localization of myrosinase in Brassica napus L., Planta 180, 245–248.

    Article  CAS  Google Scholar 

  • Thangstad O.P., Evjen K., Bones A.M. (1991) Immunogold-EM localization of myrosinase, Protoplasma 161, 85–93.

    Article  CAS  Google Scholar 

  • Thangstad O.P., Winge P., Husebye H., Bones A.M. (1993) The thioglucoside glucohydrolase (myrosinase) gene family in Brassicacea, Plant Mol. Biol. 23, 511–524.

    CAS  Google Scholar 

  • Thangstad O.P., Bones A.M., Holtan S., Moen L., Rossiter J.T. (2001) Microautoradiographic localisation of a glucosinolate precursor to specific cells in Brassica napus L. embryos indicates a separate transport pathway into myrosin cells, Planta 213, 207–213.

    Article  PubMed  CAS  Google Scholar 

  • Thangstad O.P., Gilde B., Chadchawan S., Seem M., Husebye H., Bradley D., Bones A.M. (2004) Cell specific, cross-species expression of myrosinases in Brassica napus, Arabidopsis thaliana and Nicotiana tabacum, Plant Mol. Biol. 54, 597–611.

    CAS  Google Scholar 

  • Thomma B., Cammue B., Thevissen K. (2002) Plant defensins, Planta 216, 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Traynier R.M.M. (1967a) Stimulation of oviposition by the cabbage root fly Erioischia brassicae, Entomol. Exp. Appl. 10, 401–412.

    Article  Google Scholar 

  • Traynier R.M.M. (1967b) Effect of host plant odour on the behaviour of the adult cabbage root fly, Erioischiabrassicae, Entomol. Exp. Appl. 10, 321–328.

    Article  Google Scholar 

  • Traynier R.M.M., Truscott R.J.W. (1991) Potent natural egg-laying stimulant for cabbage butterfly Pieris rapae, J. Chem. Ecol. 17, 1371–1380.

    Article  CAS  Google Scholar 

  • Tripathi M.K., Mishra A.S. (2007) Glucosinolates in animal nutrition: A review, Anim. Feed Sci. Tech. 132, 1–27.

    Article  CAS  Google Scholar 

  • Tscharntke T., Hawkins B.A. (2002) Multitrophic level interactions, Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Tuttle A.F., Ferro D.N., Idoine K. (1988) Role of visual and olfactory stimuli in host finding of adult cabbage root flies, Delia radicum, Entomol. Exp. Appl. 47, 37–44.

    Article  Google Scholar 

  • U.N. (1935) Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization, Japan J. Bot. 7, 389–452.

    Google Scholar 

  • Ulland S., Ian E., Mozuraitis R., Borg-Karlson A.K., Meadow R., Mustaparta H. (2008) Methyl salicylate, identified as primary odorant of a specific receptor neuron type, inhibits oviposition by the moth Mamestra brassicae L. (Lepidoptera, Noctudae), Chem. Senses 33, 35–46.

    Article  CAS  Google Scholar 

  • Ulmer B.J. (2002) Crucifer host plant suitability for bertha armyworm (Mamestra configrata) and diamondback moth (Plutella xylostella). Doctoral thesis, College of Graduate Studies and Research, Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.

    Google Scholar 

  • Ulmer B.J., Gillott C., Woods D., Erlandson M. (2002) Diamondback moth, Plutella xylostella (L.), feeding and oviposition preferences on glossy and waxy Brassica rapa (L.) lines, Crop Prot. 21, 327–331.

    Article  Google Scholar 

  • Ulmer B.J., Gillott C., Erlandson M. (2003) Conspecific eggs and bertha armyworm, Mamestra configrata (Lepidoptera: Noctuidae), Oviposition site selection, Environ. Entomol. 32, 529–534.

    Google Scholar 

  • Ulmer B.J., Dosdall L.M. (2006) Glucosinolate profile and oviposition behavior in relation to the susceptibilities of Brassicaceae to the cabbage seedpod weevil, Entomol. Exp. Appl. 121, 203–213.

    Article  CAS  Google Scholar 

  • Valantin-Morison M., Meynard J.M., Dore T. (2007) Effects of crop management and surrounding field environment on insect incidence in organic winter oilseed rape (Brassica napus L.), Crop Prot. 26, 1108–1120.

    Article  Google Scholar 

  • Van Dam N.M., Raaijmakers C.E., Van der Putten W.H. (2005) Root herbivory reduces growth and survival of the shoot feeding specialist Pieris rapae on Brassica nigra, Entomol. Exp. Appl. 115, 161–170.

    Article  Google Scholar 

  • Van Dam N., Raaijmakers C. (2006) Local and systemic induced responses to cabbage root fly larvae (Delia radicum) in Brassica nigra and B. oleracea, Chemoecology 16, 17–24.

    Article  CAS  Google Scholar 

  • Van Loon J.J.A., Blaakmeer A., Griepink F.C., Van Beek T.A., Schoonhoven L.M., De Groot A. (1992) Leaf surface compound from Brassica oleracea (Cruciferae) induces oviposition by Pieris brassicae (Lepidoptera: Pieridae), Chemoecology 3, 39–44.

    Article  Google Scholar 

  • Van Loon J.J.A., Wang C.Z., Nielsen J.K., Gols R., Qiu Y.T. (2002) Flavonoids from cabbage are feeding stimulants for diamondback moth larvae additional to glucosinolates: Chemoreception and behaviour, Entomol. Exp. Appl. 104, 27–34.

    Article  Google Scholar 

  • Verhoeven D.T.H., Verhagen H., Goldbohm R.A., Van den Brandt P.A., Van Poppel G. (1997) A review of mechanisms underlying anticarcinogenicity by Brassica vegetables, Chem.-Biol. Interact. 103, 79–129.

    Article  PubMed  CAS  Google Scholar 

  • Verkerk R.H.J., Wright D.J. (1996) Common cabbage resistance mechanisms against the diamondback moth: still an open book, Ann. Appl. Biol. 128, 571–577.

    Article  Google Scholar 

  • Verschaffelt E. (1910) De oorzaak der voedselkeus bij eenige plantenetende insecten, Versl. gewone Vergad. Akad. Amst. 19, 594–600.

    Google Scholar 

  • Vet L.E.M., Dicke M. (1992) Ecology of infochemical use by natural enemies in a tritrophic context, Ann. Rev. Entomol. 37, 141–172.

    Article  Google Scholar 

  • Vig K. (2002) Data on the biology of the crucifer flea beetle, Phyllotreta cruciferae (Goeze, 1777) (Coleoptera, Chrysomelidae, Alticinae), Mededelingen (Rijksuniversiteit te Gent. Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen) 67, 537–546.

    Google Scholar 

  • Visvalingam S., Hønsi T.G., Bones A.M. (1998) Sulphate and micronutrients can modulate the expression levels of myrosinases in Sinapis alba L. plants, Physiol. Plant. 104, 30–37.

    Article  CAS  Google Scholar 

  • Wang J., Chen Z., Du J., Sun Y., Liang A. (2005) Novel insect resistance in Brassica napus developed by transformation of chitinase and scorpion toxin genes, Plant Cell Rep. 24, 549–555.

    Article  PubMed  CAS  Google Scholar 

  • Warton B., Matthiessen J.N., Shackleton M.A. (2003) Cross-enhancement: enhanced biodegradation of isothiocyanates in soils previously treated with metham sodium, Soil Biol. Biochem. 35, 1123–1127.

    CAS  Google Scholar 

  • Williams I.H. (2006) Integrating parasitoids into management of pollen beetle on oilseed rape, Agron. Res. 4 (Special Issue), 465–470.

    Google Scholar 

  • Williams J.S., Cooper R.M. (2004) The oldest fungicide and newest phytoalexin - a reappraisal of the fungitoxicity of elemental sulphur, Plant Pathol. 53, 263–279.

    Article  CAS  Google Scholar 

  • Wittstock U., Halkier B.A. (2002) Glucosinolate research in the Arabidopsis era, Trends Plant Sci. 7, 263–270.

    Article  PubMed  CAS  Google Scholar 

  • Wittstock U., Agerbirk N., Stauber E.J., Olsen C.E., Hippler M., Mitchell-Olds T., Gershenzon J., Vogel H. (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense, Proc. Natl Acad. Sci. (USA) 101, 4859–4864.

    Article  CAS  Google Scholar 

  • Wolfson J. (1980) Oviposition response of Pieris rapae to environmentally induced variation in Brassica nigra, Entomol. Exp. Appl. 27, 223–232.

    Article  Google Scholar 

  • Wright D.J., Verkerk R.H.J. (1995) Integration of chemical and biological control systems for arthropods: Evaluation in a multitrophic context, Pestic. Sci. 44, 207–218.

    CAS  Google Scholar 

  • Xue J., Lenman M., Falk A., Rask L. (1992) The glucosinolate-degrading enzyme myrosinase in Brassicaceae is encoded by a gene family, Plant Mol. Biol. 18, 387–398.

    CAS  Google Scholar 

  • Zabala M.De.T., Grant M., Bones A.M., Bennett R., Lim Y.S., Kissen R., Rossiter J.T. (2005) Characterisation of recombinant epithiospecifier protein and its over-expression in Arabidopsis thaliana, Phytochemistry 66, 859–867.

    Article  CAS  Google Scholar 

  • Zhang G., Zhou W. (2006) Genetic analyses of agronomic and seed quality traits of synthetic oilseed Brassicanapus produced from interspecific hybridization of B. campestris and B. oleracea, J. Genet. 85, 45–51.

    Article  PubMed  Google Scholar 

  • Zhou W.J., Zhang L.W. (2001) Oilseed rape, in: Wu J.L., Zhang G.P. (Eds.), Seed Production and Quality Control in Crops, Zhejiang University Press, Hangzhou, China, pp. 78–95.

    Google Scholar 

  • Zukalová H., Vašák J. (2002) The role and effects of glucosinolates of Brassica species - A review, Rost. Výroba 48, 175–180.

    Google Scholar 

Download references

Acknowledgements

We are grateful to Ingeborg Klingen, Ralph Kissen, Carolyn Baggerud and Sankalp Ahuja for critical reading of the article and providing constructive comments. We further thank three anonymous reviewers for their suggestions. The authors thank Drs. Jean-Marie Bossennec (France), Ian Kimber and Ben Smart (UK), Paolo Mazzei (Italy), and Anna Kusnierczyk (from our group) for providing insect pictures or giving permission to use insect images from homepages: (http://www.inra.fr/hyppz/pests.htm), (http://ukmoths.org.uk/show.php) and (http://www.leps.it/index.htm) to make Fig. 3. This work was supported by the grants No. 185173 (Plant innate immunity), No. 184146 (A systems biology approach for modelling of plant signalling and host defence) and No. 175691 (NKJ 126 - Genomic analyses and modelling of plant secondary metabolism for development of oilseed rape with improved pest resistance) from the Norwegian Research Council (RCN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ishita Ahuja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ahuja, I., Rohloff, J., Bones, A.M. (2011). Defence Mechanisms of Brassicaceae: Implications for Plant-Insect Interactions and Potential for Integrated Pest Management. In: Lichtfouse, E., Hamelin, M., Navarrete, M., Debaeke, P. (eds) Sustainable Agriculture Volume 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0394-0_28

Download citation

Publish with us

Policies and ethics