Skip to main content

Validation of Biophysical Models: Issues and Methodologies

  • Chapter
  • First Online:
Sustainable Agriculture Volume 2

Abstract

The potential of mathematical models is widely acknowledged for examining components and interactions of natural systems, estimating the changes and uncertainties on outcomes, and fostering communication between scientists with different backgrounds and between scientists, managers and the community. For favourable reception of models, a systematic accrual of a good knowledge base is crucial for both science and decision-making. As the roles of models grow in importance, there is an increase in the need for appropriate methods with which to test their quality and performance. For biophysical models, the heterogeneity of data and the range of factors influencing usefulness of their outputs often make it difficult for full analysis and assessment. As a result, modelling studies in the domain of natural sciences often lack elements of good modelling practice related to model validation, that is correspondence of models to its intended purpose. Here we review validation issues and methods currently available for assessing the quality of biophysical models. The review covers issues of validation purpose, the robustness of model results, data quality, model prediction and model complexity. The importance of assessing input data quality and interpretation of phenomena is also addressed. Details are then provided on the range of measures commonly used for validation. Requirements for a methodology for assessment during the entire model-cycle are synthesised. Examples are used from a variety of modelling studies which mainly include agronomic modelling, e.g. crop growth and development, climatic modelling, e.g. climate scenarios, and hydrological modelling, e.g. soil hydrology, but the principles are essentially applicable to any area. It is shown that conducting detailed validation requires multi-faceted knowledge, and poses substantial scientific and technical challenges. Special emphasis is placed on using combined multiple statistics to expand our horizons in validation whilst also tailoring the validation requirements to the specific objectives of the application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraha M.G., Savage M.J. (2008) Comparison of estimates of daily solar radiation from air temperature range for application in crop simulations, Agr. Forest Meteorol. 148, 401–416.

    Google Scholar 

  • Addiscott T.M., Whitmore A.P. (1987) Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winter and spring, J. Agr. Sci. 109, 141–157.

    Google Scholar 

  • Agresti A. (2002) Categorical data analysis, (2nd ed.), Wiley, New York, NY, USA.

    Google Scholar 

  • Aitken A.P. (1973) Assessing systematic errors in rainfall runoff models, J. Hydrol. 20, 121–136.

    Google Scholar 

  • Akaike H. (1974) A new look at the statistical model identification, IEEE T. Automat. Contr. 19, 716–723.

    Google Scholar 

  • American Institute of Aeronautics and Astronautics (1998) Guide for the verification and validation of computational fluid dynamics, American Institute of Aeronautics and Astronautics, AIAA-G-077-1998, Reston, VA, USA.

    Google Scholar 

  • American Society for Testing and Material (1984) Standard practice for evaluating environmental face models of chemicals, American Society for Testing and Material, Philadelphia, PA, USA, Standard E 978–984.

    Google Scholar 

  • Analla M. (1998) Model validation through the linear regression fit to actual versus predicted values, Agr. Syst. 57, 115–119.

    Google Scholar 

  • Anderson M.G., Bates P.D. (2001) Hydrological science: model credibility and scientific understanding, in: Anderson M.G., Bates P.D. (Eds.), Model validation: perspectives in hydrological science, John Wiley & Sons, New York, USA, Vol. 1, pp. 1–10.

    Google Scholar 

  • Anonymous (2003) How to estimate grain harvest losses, Prairie Grains, Issue 54.

    Google Scholar 

  • Argent R.M. (2004) An overview of model integration for environmental applications – components, frameworks and semantics, Environ. Modell. Softw. 19, 219–234.

    Google Scholar 

  • Arnold T., Berger T., Uribe T. (2008) Step by step calibration of an integrated system for irrigation management, in: Quinn N.W.T. (Ed.) Integration of sensor networks and decision support tools for basin-scale, real-time water quality management, in: Sànchez-Marrè M., Béjar J., Comas J., Rizzoli A.E., Guariso G. (Eds.), Integrating sciences and information technology for environmental assessment and decision making, Proc. 4th Biennial Meeting of the International Environmental Modelling and Software Society, 7–10 July, Barcelona, Spain, Vol. 1, pp. 584–591.

    Google Scholar 

  • Aumann C.A. (2008) A methodology for building credible models for policy evaluation, in: Sànchez-Marrè M., Béjar J., Comas J., Rizzoli A.E., Guariso G. (Eds.), Integrating sciences and information technology for environmental assessment and decision making, Proc. 4th Biennial Meeting of the International Environmental Modelling and Software Society, 7–10 July, Barcelona, Spain, Vol. 1, pp. 1025–1032.

    Google Scholar 

  • Austin M.P., Belbin L., Meyers J.A., Doherty M.D., Luoto M. (2006) Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory, Ecol. Model. 199, 197–216.

    Google Scholar 

  • Bair E.S. (1994) Model (in)validation – a view from courtroom, Ground Water 32, 530–531.

    Google Scholar 

  • Balci O., Sargent R.G. (1982a) Some examples of simulation model validation using hypothesis testing, in: Highland H.J., Chao Y.W., Madrigal O. (Eds.), Proc. 14th Conference on Winter Simulation, December 6–8, San Diego, CA, USA, Vol. 2, pp. 621–629.

    Google Scholar 

  • Balci O., Sargent R.G. (1982b) Validation of multi-variate response simulation models by using Hotelling’s two-sample T2 test, Simulation 39, 185–192.

    Google Scholar 

  • Barbottin A., Le Bail M., Jeuffroy M.H. (2006) The Azodyn crop model as a decision support tool for choosing cultivars, Agron. Sustain. Dev. 26, 107–115.

    Google Scholar 

  • Barbottin A., Makowski D., Le Bail M., Jeuffroy M.-H., Bouchard C., Barrier C. (2008) Comparison of models and indicators for categorizing soft wheat fields according to their grain protein contents, Eur. J. Agron. 29, 175–183.

    CAS  Google Scholar 

  • Beguería S. (2006) Validation and evaluation of predictive models in hazard assessment and risk management, Nat. Hazards 37, 315–329.

    Google Scholar 

  • Bellocchi G. (2004) Appendix A. Numerical indices and test statistics for model evaluation, in: Pachepsky Ya., Rawls W.J. (Eds.), Development of pedotransfer functions in soil hydrology, Elsevier, Amsterdam, The Netherlands, pp. 394–400.

    Google Scholar 

  • Bellocchi G., Acutis M., Fila G., Donatelli M. (2002a) An indicator of solar radiation model performance based on a fuzzy expert system, Agron. J. 94, 1222–1233.

    Google Scholar 

  • Bellocchi G., Donatelli M., Fila G. (2003) Calculating reference evapotranspiration and crop biomass using estimated radiation inputs, Ital. J. Agron. 7, 95–102.

    Google Scholar 

  • Bellocchi G., Fila G., Donatelli M. (2002b) Integrated evaluation of cropping systems models by fuzzy-based procedure, in: Villalobos F.J., Testi L. (Eds.), Proc. 7th European Society for Agronomy Congress, 15–18 July, Cordoba, Spain, pp. 243–244.

    Google Scholar 

  • Bellocchi G., Smith J., Donatelli M., Smith P. (2004) Improvements in time mismatch analysis of model estimates, in: Jacobsen S.E., Jensen C.R. Porter J.R. (Eds.), Proc. of 8th European Society for Agronomy Congress, 11–15 July, Copenhagen, Denmark, pp. 221–222.

    Google Scholar 

  • Berk R.A., Bickel P., Campbell K. (2002) Workshop on statistical approaches for the evaluation of complex computer models, Stat. Sci. 17, 173–192.

    Google Scholar 

  • Berk R.A., Fovell R.G., Schoenberg F., Weiss R.E. (2001) The use of statistical tools for evaluating computer simulations – an editorial essay, Climatic Change 51, 119–130.

    Google Scholar 

  • Beven K.J. (1993) Prophecy, reality and uncertainty in distributed hydrological modelling, Adv. Water Resour. 16, 41–51.

    Google Scholar 

  • Beven K.J. (2007) Towards integrated environmental models of everywhere: uncertainty, data and modelling as a learning process, Hydrol. Earth Syst. Sc. 11, 460–467.

    Google Scholar 

  • Beven K.J., Freer J. (2001) Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology, J. Hydrol. 249, 11–29.

    Google Scholar 

  • Bland J.M., Altman D.G. (1995) Comparing methods of measurement: why plotting against standard method is misleading, Lancet 346, 1085–1087.

    PubMed  CAS  Google Scholar 

  • Bolte J.P., Hulse D.W., Gregory S.V., Smith C. (2004) Modelling biocomplexity - actors, landscapes and alternative futures, in: Pahl-Woslt C., Schmidt S., Rizzoli A.E., Jakeman A.J. (Eds.), Complexity and integrated resources, Trans. 2nd Biennial Meeting of the International Environmental Modelling and Software Society, 14–17 June, Osnabrück, Germany, Vol. 1, pp. 1–10.

    Google Scholar 

  • Breiman L., Spector P. (1992) Submodel selection and evaluation in regression: the X-random case, Int. Stat. Rev. 60, 291–319.

    Google Scholar 

  • Campbell J.B. (1996) Introduction to remote sensing, 2nd ed., The Guilford Press, New York, NY, USA.

    Google Scholar 

  • Cardoso A.C., Lopes J.F. (2008) 3D ecological modelling of the Aveiro coast (Portugal), in: Sànchez-Marrè M., Béjar J., Comas J., Rizzoli A.E., Guariso G. (Eds.), Integrating sciences and information technology for environmental assessment and decision making, Proc. 4th Biennial Meeting of the International Environmental Modelling and Software Society, 7–10 July, Barcelona, Spain, Vol. 1, pp. 181–190.

    Google Scholar 

  • Checkland P.B. (1981) Systems thinking, systems practice, John Wiley & Sons, London.

    Google Scholar 

  • Chen D.X., Coughenour M.B. (2004) Photosynthesis, transpiration, and primary productivity: Scaling up from leaves to canopies and regions using process models and remotely sensed data, Global Biogeochem. Cy. 18, GB4033.

    Google Scholar 

  • Cheng R.T., Burau J.R., Gartner J.W. (1991) Interfacing data analysis and numerical modelling for tidal hydrodynamic phenomena, in: Parker B.B. (Ed.), Tidal hydrodynamics, John Wiley & Sons, New York, NY, USA, pp. 201–219.

    Google Scholar 

  • Chung S.W., Gasman P.W., Huggins D.R., Randall G.W. (2000) Evaluation of EPIC for three Minnesota cropping systems. Working paper 00-WP 240, Centre for Agricultural and Rural Development, Iowa State University, Ames, IO, USA.

    Google Scholar 

  • Chung S.W., Gasman P.W., Kramer L.A., Williams J.R., Gu R. (1999) Validation of EPIC for two watersheds in Southwest Iowa, J. Environ. Qual. 28, 971–979.

    CAS  Google Scholar 

  • Clouse R.W., Heatwole C.D. (1996) Evaluation of GLEAMS considering parameter uncertainty, ASAE paper No. 96-2023, St. Joseph, MI, USA.

    Google Scholar 

  • Cochran W.G., Cox G.M. (1957) Experimental design, John Wiley & Sons, New York, NY, USA.

    Google Scholar 

  • Cornelissen J.H.C., Lavorel S., Garnier E., Diaz S., Buchmann N., Gurwich D.E., Reich P.B., ter Steege H., Morgan H.D., van der Heijden M.G.A., Pausas J.G., Poorter H. (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide, Aust. J. Bot. 51, 335–380.

    Google Scholar 

  • Daniel W.W. (1995) Biostatistics: a foundation for analysis in the health sciences, John Wiley & Sons Inc., New York, NY, USA.

    Google Scholar 

  • Davies J.A., McKay D.C. (1989) Evaluation of selected models for estimating solar radiation on horizontal surfaces, Sol. Energy 43, 153–168.

    Google Scholar 

  • De Wit C.T. (1993) Philosophy and terminology, in: Leffelaar P.A. (Ed.), On systems analysis and simulation of ecological processes – with examples in CSMP and FORTRAN. Kluver, Dordrecht, The Netherlands, pp. 3–9.

    Google Scholar 

  • Dent J.B., Blackie M.J. (1979) Systems simulation in agriculture, Applied Science Publishers Ltd., London, United Kingdom.

    Google Scholar 

  • Dhanoa M.S., Lister S.J., France J., Barnes R.L. (1999) Use of mean square prediction error analysis and reproducibility measures to study near infrared calibration equation performance, J. Near Infrared Spec. 7, 133–143.

    CAS  Google Scholar 

  • Dias, J.M., Lopes, J.F. (2006) Implementation and assessment of hydrodynamic, salt and heat transport models: the case of Ria de Aveiro Lagoon (Portugal), Environ. Modell. Softw. 21, 1–15.

    Google Scholar 

  • Diekkrüger B., Söndgerath D., Kersebaum K.C., McVoy C.V. (1995) Validity of agroecosystem models applied to the same data set, Ecol. Model. 81, 3–29.

    Google Scholar 

  • Dillaha T.A. (1990) Role of best management practices in restoring the health of the Chesapeake Bay: Assessments of effectiveness, in: Haire M., Krome E.C. (Eds.), Perspectives on the Chesapeake Bay, 1990: Advances in estuarine sciences. CBP/TRS41/90. Chesapeake Bay Consortium. US EPA Chesapeake Bay Program. Annapolis, Maryland, USA, pp. 57–81.

    Google Scholar 

  • Diodato N., Bellocchi G. (2007a) Estimating monthly (R)USLE climate input in a Mediterranean region using limited data, J. Hydrol. 345, 224–236.

    Google Scholar 

  • Diodato N., Bellocchi G. (2007b) Modelling reference evapotranspiration over complex terrains from minimum climatological data, Water Resour. Res. 43, doi:10.1029/ 2006WR005405.

    Google Scholar 

  • Diodato N., Bellocchi G. (2007c) Modelling solar radiation over complex terrains using monthly climatological data, Agr. Forest Meteorol. 144, 111–126.

    Google Scholar 

  • Donatelli M., Acutis M., Bellocchi G. (2000) Two statistical indices to quantify patterns of errors produced by models, in: Christen O., Ordon F. (Eds.), Proc. 3rd International Crop Science Conference, 17–22 August, Hamburg, Germany, p. 186.

    Google Scholar 

  • Donatelli M., Acutis M., Bellocchi G., Fila G. (2004a) New indices to quantify patterns of residuals produced by model estimates, Agron. J. 96, 631–645.

    Google Scholar 

  • Donatelli M., Acutis M., Fila G., Bellocchi G. (2002a) A method to quantify time mismatch of model estimates, in: Villalobos F.J., Testi L. (Eds.), Proc. 7th European Society for Agronomy Congress, 15–18 July, Cordoba, Spain, pp. 269–270.

    Google Scholar 

  • Donatelli M., Acutis M., Nemes A., Wösten H. (2004b) Integrated indices for pedotransfer function evaluation, in: Pachepsky Ya., Rawls W.J. (Eds.), Development of pedotransfer functions in soil hydrology. Elsevier, Amsterdam, The Netherlands, pp. 363–390.

    Google Scholar 

  • Donatelli M., van Ittersum M.K., Bindi M., Porter J.R. (2002b) Modelling cropping systems – highlights of the symposium and preface to the special issues, Eur J. Agron. 18, 1–11.

    Google Scholar 

  • Efron B. (1986) how biased is the apparent error rate of a prediction rule, J. Am. Stat. Assoc. 81, 461–470.

    Google Scholar 

  • Environmental Protection Agency (1991) Guideline for regulatory application of the urban airshed model. U.S., Environmental Protection Agency Office of Air Quality Planning and Standards, Research Triangle Park, NC, 27711, EPA-450/4-91-013.

    Google Scholar 

  • Favis-Mortlock D., Boardman J., MacMillan V. (2001) The limits of erosion modeling: why we should proceed with care, in: Harmon R.S., Doe W.W. III (Eds.), Landscape erosion and evolution modeling. Kluwer Academic/Plenum Publisher, New York, NY, USA, pp. 477–516.

    Google Scholar 

  • Fila G., Bellocchi G., Acutis M., Donatelli M. (2003a) IRENE: a software to evaluate model performance, Eur. J. Agron. 18, 369–372.

    Google Scholar 

  • Fila G., Bellocchi G., Donatelli M., Acutis M. (2003b) IRENE_DLL: A class library for evaluating numerical estimates, Agron. J. 95, 1330–1333.

    Google Scholar 

  • Fodor N., Kovács G.J. (2003) Sensitivity of 4M model to the inaccuracy of weather and soil input data, Appl. Ecol. Environ. Res. 1, 75–85.

    Google Scholar 

  • Forrester J.W. (1961) Industrial dynamics, Pegasus Communications, Waltham, MA, USA.

    Google Scholar 

  • Forsythe W.C., Rykiel E.J. Jr., Stahl R.S., Wu H., Schoolfield R.M. (1995) A model comparison for daylength as a function of latitude and day of year, Ecol. Model. 80, 87–95.

    Google Scholar 

  • Fox D.G. (1981) Judging air quality model performance: a summary of the AMS workshop on dispersion models performance, Bull. Am. Meteorol. Soc. 62, 599–609.

    Google Scholar 

  • Franks SW., Beven K.J., Quinn P.F., Wright I.R. (1997) On the sensitivity of soil-vegetation-atmosphere transfer (SVAT) schemes: equifinality and the problem of robust calibration, Agr. Forest Meteorol. 86, 63–75.

    Google Scholar 

  • Gardner R.H., Urban D.L. (2003) Model validation and testing: past lessons, present concerns, future prospects, in: Canham C.D., Cole J.J., Lauenroth W.K. (Eds.), Models in ecosystem science. Princeton University Press, Princeton, NJ, USA, pp. 184–203.

    Google Scholar 

  • Gauch H.G. Jr., Fick W. (2003) In model evaluation, what is X and what is Y? in: 2003 annual meeting abstracts. [CD-ROM], ASA, CSSA and SSSA, Madison, WI, USA.

    Google Scholar 

  • Gauch H.G. Jr., Gene Hwang J.T., Fick G.W. (2003) Model evaluation by comparison of model-based predictions and measured values, Agron. J. 95, 1442–1446.

    Google Scholar 

  • Gauch H.G. Jr., Gene Hwang J.T., Fick G.W. (2004) Reply, Agron. J. 96, 1207–1208.

    Google Scholar 

  • Global Climate and Terrestrial Ecosystems (1992) Effects of change on the wheat ecosystem, Workshop report, GCTE Focus 3 meeting, Saskatoon, SK, Canada, 22–24 July, University of Oxford, United Kingdom.

    Google Scholar 

  • Gobas F.A.P.C., Pasternak J.P., Lien K., Duncan R.K. (1998) Development and field validation of a multimedia exposure assessment models for waste load allocation in aquatic ecosystems: application to 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2,3,7,8-tetrachlorodibenzofuran in the Fraser River watershed, Environ. Sci. Technol. 32, 2442–2449.

    CAS  Google Scholar 

  • Green I.R.A., Stephenson D. (1986) Criteria for comparison of single event models, J. Hydrol. Sci. 31, 395–411.

    Google Scholar 

  • Greenwood D.J., Neeteson J.J., Draycott A. (1985) Response of potatoes to N fertilizer: dynamic model, Plant Soil 85, 185–203.

    CAS  Google Scholar 

  • Hamilton M.A. (1991) Model validation: an annotated bibliography, Comm. Stat. Theor. M. 20, 2207–2266.

    Google Scholar 

  • Hanft J.M., Wych R.D. (1982) Visual indicators of physiological maturity of hard red spring wheat, Crop Sci. 22, 584–588.

    Google Scholar 

  • Harmel R.D., Smith P.K. (2007) Consideration of measurement uncertainty in the evaluation of goodness-of-fit in hydrologic and water quality modelling, J. Hydrol. 337, 326–336.

    Google Scholar 

  • Harmel R.D., Smith D.R., King K.W., Slade R.M., Smith P. (2008) Data uncertainty estimation tool for hydrology and water quality (DUET-H/WQ): estimating measurement uncertainty for monitoring and modelling applications, in: Sànchez-Marrè M., Béjar J., Comas J., Rizzoli A.E., Guariso G. (Eds.), Integrating sciences and information technology for environmental assessment and decision making, Proc. 4th Biennial Meeting of the International Environmental Modelling and Software Society, 7–10 July, Barcelona, Spain, Vol. 1, pp. 574–583.

    Google Scholar 

  • Harrison S.R. (1990) Regression of a model on real-system output: an invalid test of model validity, Agr. Syst. 34, 183–190.

    Google Scholar 

  • Heinmann A.B., Hoogenboom G., Chojnicki B. (2002) The impact of potential errors in rainfall observations on the simulation of crop growth, development and yield, Ecol. Model. 157, 1–21.

    Google Scholar 

  • Herbst M., Casper M.C. (2008) Towards model evaluation using Self-Organizing Maps, in: Sànchez-Marrè M., Béjar J., Comas J., Rizzoli A.E., Guariso G. (Eds.), Integrating sciences and information technology for environmental assessment and decision making, Proc. 4th Biennial Meeting of the International Environmental Modelling and Software Society, 7–10 July, Barcelona, Spain, Vol. 3, pp. 1055–1062.

    Google Scholar 

  • Hinkle D., Wiersma W., Jurs S. (1994) Applied statistics for the behavioural sciences, 3rd ed., Houghton Mifflin Company, Boston, MT, USA.

    Google Scholar 

  • Hochman Z., van Rees H., Carberry P.S., Holzworth D., Dalgliesh, N.P., Hunt J., Poulton P.L., Brennan, L.E., Darbas T., Fisher J., van Rees, S., Huth N.I. Peake A.S., McCown R.L. (2005) Can access to a cropping system simulator help farmers reduce risk in drought-prone environments? in: InterDrought-II, 2nd Int. Conf. Integrated Approaches to Sustain and Improve Plant Production Under Drought Stress 24–28 September, Rome, Italy.

    Google Scholar 

  • Hoogenboom G. (2000) Contribution of agro-meteorology to the simulation of crop production and its applications, Agr. Forest Meteorol. 103, 137–157.

    Google Scholar 

  • Hsu M.H., Kuo A.Y., Kuo J.T., Liu W.C. (1999) Procedure to calibrate and verify numerical models of estuarine hydrodynamics, J. Hydrol. Eng. 125, 166–182.

    Google Scholar 

  • Huth N., Holzworth D. (2005) Common sense in model testing, in: Zerger A., Argent R.M. (Eds.), Proc. MODSIM 2005 International Congress on Modelling and Simulation: Advances and applications for management and decision making, 12–15 December, Melbourne, Australia, pp. 2804–2809.

    Google Scholar 

  • Institute of Electrical and Electronics Engineers (1991) IEEE standard glossary of software engineering terminology, IEEE, IEEE Std 610.12-1990, New York, NY, USA.

    Google Scholar 

  • Jakeman A.J., Letcher R.A., Norton J.P. (2006) Ten iterative steps in development and evaluation of environmental models, Environ. Modell. Softw. 21, 606–614.

    Google Scholar 

  • James L.D., Burges S.J. (1982) Selection, calibration, and testing of hydrologic models, in: Haan C.T., Johnson H.P., Brakensiek D.L. (Eds.), Hydrologic modelling of small watersheds, American Society of Agricultural Engineers, St. Joseph, MI, USA, pp. 437–472.

    Google Scholar 

  • Jamieson P.D., Porter J.R., Semenov M.A., Brooks R.J., Ewert F., Ritchie J.T. (1999) Comments on “Testing winter wheat simulation models predictions against observed UK grain yields” by Landau et al. (1998), Agr. Forest Meteorol. 96, 157–161.

    Google Scholar 

  • Janssen P.H.M., Heuberger P.S.C. (1995) Calibration of process-oriented models, Ecol. Model. 83, 55–66.

    Google Scholar 

  • Kanevski M., Pozdnoukhov A., Timonin V. (2008) Machine learning algorithms for geospatial data. Applications and software tools, in: Sànchez-Marrè M., Béjar J., Comas J., Rizzoli A.E., Guariso G. (Eds.), Integrating sciences and information technology for environmental assessment and decision making, Proc. 4th Biennial Meeting of the International Environmental Modelling and Software Society, 7–10 July, Barcelona, Spain, Vol. 1, pp. 320–327.

    Google Scholar 

  • Keating B.A., Robertson M.J., Muchow R.C., Huth N.L. (1999) Modelling sugarcane production systems. 1. Development and performance of the sugarcane module, Field Crops Res. 61, 253–271.

    Google Scholar 

  • Kleijnen J.P.C., Bettonvil B., van Groenendaal W. (1998) Validation of trace-driven simulation models: a novel regression test, Manage. Sci. 44, 812–819.

    Google Scholar 

  • Kleijnen J.P.C., Cheng R.C.H., Bettonvil B. (2001) Validation of trace-driven simulation models: bootstrapped tests, Manage. Sci. 47, 1533–1538.

    Google Scholar 

  • Klepper O. (1989) A model of carbon flow in relation to macrobenthic food supply in the Oosterschelde estuary (S.W. Netherlands), PhD-Thesis, Wageningen Agricultural University, The Netherlands.

    Google Scholar 

  • Kobayashi K. (2004) Comments on another way of partitioning mean squared deviation proposed by Gauch et al. (2003), Agron. J. 96, 1206–1207.

    Google Scholar 

  • Kobayashi K., Salam M.U. (2000) Comparing simulated and measured values using mean squared deviation and its components, Agron. J. 92, 345–352.

    Google Scholar 

  • Krause P., Boyle D.P., Bäse F. (2005) Comparison of different efficiency criteria for hydrological model assessment, Adv. Geosci. 5, 89–97.

    Google Scholar 

  • Kuhnert M., Voinov A., Seppelt R. (2005) Comparing raster map comparison algorithms for spatial modeling and analysis, Photogramm. Eng. Rem. S. 71, 975–984.

    Google Scholar 

  • Kumar A. (2000) Dispersion and risk modelling, Department of Civil Engineering, University of Toledo, OH, USA, CIVE-6630:995.

    Google Scholar 

  • Kvalseth T.O. (1985) Cautionary note about R2, Am. Stat. 39, 279–285.

    Google Scholar 

  • Landau S., Mitchell R.A.C., Barnett V., Colls J.J., Craigon J., Moore K.L., Payne R.W. (1998) Testing winter wheat simulation models’ predictions against observed UK grain yields, Agr. Forest Meteorol. 89, 85–99.

    Google Scholar 

  • Landau S., Mitchell R.A.C., Barnett V., Colls J.J., Craigon J., Payne R.W. (1999) Response to “Comments on ‘Testing winter wheat simulation models predictions against observed UK grain yields by Landau et al. [Agr. For. Meteorol. 89 (1998) 85-99]’ by Jamieson et al. [Agr. For. Meteorol., this issue]”, Agr. Forest Meteorol. 96, 163–164.

    Google Scholar 

  • Landau S., Mitchell R.A.C., Barnett V., Colls J.J., Craigon J., Payne R.W. (2000) A parsimonious, multiple-regression model of wheat yield response to environment, Agr. Forest Meteorol. 101, 151–166.

    Google Scholar 

  • Landry M., Oral M. (1993) In search of a valid view of model validation for operations research, Eur. J. Oper. Res. 66, 161–167.

    Google Scholar 

  • Leffelaar P.A. (1990) On scale problems in modelling: an example from soil ecology, in: Rabbinge R., Goudriaan J., van Keulen H., Penning de Vries F.W.T., van Laar H.H. (Eds.), Theoretical production ecology: reflections and prospects. Simulation Monographs 34, Pudoc, Wageningen, The Netherlands, pp. 57–73.

    Google Scholar 

  • Leffelaar P.A., Meike H., Smith P., Wallach D. (2003) Modelling cropping systems – highlights of the symposium and preface to the special issues. 3. Session B. Model parameterisation and testing, Eur. J. Agron. 18, 189–191.

    Google Scholar 

  • Li W., Arena V.C, Sussman N.B.. Mazumdar S. (2003) Model validation software for classification models using repeated partitioning: MVREP, Comput. Meth. Prog. Bio. 72, 81–87.

    Google Scholar 

  • Lin D.Y., Wei L.J., Ying Z. (2002) Model-checking techniques based on cumulative residuals, Biometrics 58, 1–12.

    PubMed  CAS  Google Scholar 

  • Ljung L. (1999) System identification – Theory for the user, 2nd ed., Prentice Hall, Upper Saddle River, NJ, USA.

    Google Scholar 

  • Loague K., Green R.E. (1991) Statistical and graphical methods for evaluating solute transport models: overview and application, J. Contam. Hydrol. 7, 51–73.

    CAS  Google Scholar 

  • Mabille F., Abecassis J. (2003) Parametric modelling of wheat grain morphology: a new perspective, J. Cereal Sci. 37, 43–53.

    Google Scholar 

  • Makowski D., Hillier J., Wallach D., Andrieu B., Jeuffroy M.-H. (2006) Parameter estimation for crop models, in: Wallach D., Makowski D., Jones J.W. (Eds.), Working with dynamic models. Evaluation, analysis, parameterization and applications, Elsevier, Amsterdam, pp. 101–150.

    Google Scholar 

  • Mallows C. (1973) Some comments on Cp, Technometrics 15, 661–675.

    Google Scholar 

  • Mankin J.B., O’Neill R.V., Shugart H.H., Rust B.W. (1977) The importance of validation in ecosystem analysis, in: Innis G.S. (Ed.), New directions in the analysis of ecological systems, Proc. Series Simulation Council 5(1), La Jolla, CA, USA, pp. 63–72.

    Google Scholar 

  • Marcus A.H., Elias R.W. (1998) Some useful statistical methods for model validation, Environ. Health Persp. 106, 1541–1550.

    CAS  Google Scholar 

  • Martorana F., Bellocchi G. (1999) A review of methodologies to evaluate agro-ecosystems simulation models, Ital. J. Agron. 3, 19–39.

    Google Scholar 

  • Matthews K.B., Rivington M., Blackstock K., Buchan K., Miller D.G. (2008) Raising the bar – Is evaluating the outcomes of decision and information support tools a bridge too far? in: Sànchez-Marrè M., Béjar J., Comas J., Rizzoli A.E., Guariso G. (Eds.), Integrating sciences and information technology for environmental assessment and decision making, Proc. 4th Biennial Meeting of the International Environmental Modelling and Software Society, 7–10 July, Barcelona, Spain, Vol. 1, pp. 948–955.

    Google Scholar 

  • Matthews K.B., Rivington M., Buchan K., Miller D., Bellocchi G. (2008) Characterising and communicating the agro-meteorological implications of climate change scenarios to land management stakeholders, Climate Res. 37, 59–75.

    Google Scholar 

  • Matthews K.B., Sibbald A.R., Craw S. (1999) Implementation of a spatial decision support system for rural land use planning: integrating GIS and environmental models with search and optimisation algorithms, Comput. Electron. Agr. 23, 9–26.

    Google Scholar 

  • Mayer D.G., Butler D.G. (1993) Statistical validation, Ecol. Model. 68, 21–32.

    Google Scholar 

  • Mayer D.G., Stuart M.A., Swain A.J. (1994) Regression of real-world data on model output: an appropriate overall test of validity, Agr. Syst. 45, 93–104.

    Google Scholar 

  • Medlyn B.E., Jarvis P.G. (1999) Design and use of a database of model parameters from elevated CO2 experiments, Ecol. Model. 124, 69–83.

    CAS  Google Scholar 

  • Medlyn B.E., Robinson A.P., Clement R., McMurtrie E. (2005) On the validation of models of forest CO2 exchange using eddy covariance data: some perils and pitfalls, Tree Physiol. 25, 839–857.

    PubMed  Google Scholar 

  • Meehl G.A., Covey C., McAvaney B., Latif M., Stouffer R.J. (2005) Overview of the coupled model intercomparison project, Bull. Am. Meteorol. Soc. 86, 89–93.

    Google Scholar 

  • Metselaar K. (1999) Auditing predictive models: a case study in crop growth, PhD-Thesis, Wageningen Agricultural University, Wageningen.

    Google Scholar 

  • Mihram G.A. (1972) Some practical aspects of the verification and validation of simulation models, Oper. Res. Quart. 23, 17–29.

    Google Scholar 

  • Mitchell P.L. (1997) Misuse of regression for empirical validation of models, Agr. Syst. 54, 313–326.

    Google Scholar 

  • Moberg A., Jones P.D. (2004) Regional climate model simulations of daily maximum and minimum near-surface temperatures across Europe compared with observed station data 1961-90, Clim. Dynam. 23, 695–715.

    Google Scholar 

  • Myung J., Pitt M.A. (2003) Model fitting, in: Nadel L. (Ed.), The encyclopedia of cognitive science, Vol. 3, MacMillan, London, United Kingdom, pp. 47–51.

    Google Scholar 

  • Nash J.E., Sutcliffe J.V. (1970) River flow forecasting through conceptual models, Part I - A discussion of principles, J. Hydrol. 10, 282–290.

    Google Scholar 

  • National Acid Precipitation Assessment Program (1990) Evaluation of regional acidic deposition models and selected applications of RADM. Acid deposition: state of sciences and technology, The National Acid Precipitation Assessment Program, Washington, DC, USA, Vol. I, Report 5.

    Google Scholar 

  • Norton J.P. (2003) Prediction for decision-making under uncertainty, in: Post D.A. (Ed.), Proc. MODSIM 2003 International Congress on Modelling and Simulation: Integrative modelling of biophysical, social and economic systems for resource management solutions, 14–17 July, Townsville, Australia, Vol. 4, pp. 1517–1522.

    Google Scholar 

  • O’Keefe R.M., Balci O., Smith E.P. (1987) Validating expert system performance, IEEE Expert 2, pp. 81–90.

    Google Scholar 

  • Oreskes N. (1998) Evaluation (not validation) of quantitative models, Environ. Health Persp. 106, 1453–1460.

    Google Scholar 

  • Oreskes N., Belitz K. (2001) Philosophical issues in model assessment, in: Anderson M.G., Bates P.D. (Eds.), Model validation: perspectives in hydrological science, John Wiley & Sons, New York, NY, USA, Vol. 3, pp. 23–41.

    Google Scholar 

  • Oreskes N., Shrader-Frechette K., Belitz K. (1994) Verification, validation and confirmation of numerical models in the earth sciences, Science 263, 641–646.

    PubMed  CAS  Google Scholar 

  • Parker V.T. (2001) Conceptual problems and scale limitations of defining ecological communities: a critique of the CI concept (Community of Individuals), Perspect. Plant Ecol. Evol. Syst. 4, 80–96.

    Google Scholar 

  • Parker D., Manson S., Janssen M., Hoffman M., Deadman P. (2003) Multi-agents systems for the simulation of land-use and land-cover change: a review, Ann. Assoc. Am. Geogr. 93, 314–337.

    Google Scholar 

  • Parrish R.S., Smith C.N. (1990) A method for testing whether model predictions fall within a prescribed factor of true values, with an application to pesticide leaching, Ecol. Model. 51, 59–72.

    CAS  Google Scholar 

  • Pastres R., Brigolin D., Petrizzo A., Zucchetta M. (2004) Testing the robustness of primary production models in shallow coastal areas: a case study, Ecol. Model. 179, 221–233.

    Google Scholar 

  • Patel V.C., Kumar A. (1998) Evaluation of three air dispersion models: ISCST2, ISCLT2, and Screen2 for mercury emissions in an urban area, Environ. Monit. Assess. 53, 259–277.

    CAS  Google Scholar 

  • Pennell K.D., Homsby A.O., Jessup R.E., Rao K.S.C. (1990) Evaluation of five simulation models for predicting aldicarb and bromide behaviour under field conditions, Water Resour. Res. 26, 2679–2693.

    CAS  Google Scholar 

  • Pilgram B., Judd K., Mees A. (2002) Modelling the dynamics of nonlinear time series using canonical variate analysis, Physica D 170, 103–117.

    Google Scholar 

  • Pontius R.G. Jr., Schneider L.C. (2001) Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA, Agr. Ecosyst. Environ. 85, 239–248.

    Google Scholar 

  • Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. (1992) Numerical recipes in Fortran 77: the art of scientific computing, 2nd ed., Cambridge University Press, New York, NY, USA.

    Google Scholar 

  • Prisley S.P., Mortimer M.J. (2004) A synthesis of literature on evaluation of models for policy applications, with implications for forest carbon accounting, Forest Ecol. Manag. 198, 89–103.

    Google Scholar 

  • Quinn N.W.T. (2008) Integration of sensor networks and decision support tools for basin-scale, real-time water quality management, in: Sànchez-Marrè M., Béjar J., Comas J., Rizzoli A.E., Guariso G. (Eds.), Integrating sciences and information technology for environmental assessment and decision making, Proc. 4th Biennial Meeting of the International Environmental Modelling and Software Society, 7–10 July, Barcelona, Spain, Vol. 1, pp. 44–53.

    Google Scholar 

  • Reckhow K.H., Chapra S.C. (1983) Engineering approaches for lake management. Vol. 1: Data analysis and empirical modelling, Butterworth Publishers, Boston.

    Google Scholar 

  • Reckhow K.H., Clements J.T., Dodd R.C. (1990) Statistical evaluation of mechanistic water-quality models, J. Environ. Eng. 116, 250–268.

    CAS  Google Scholar 

  • Refsgaard J.C., Henriksen H.J. (2004) Modelling guidelines-terminology and guiding principles, Adv. Water Resour. 27, 71–82.

    Google Scholar 

  • Reynolds J.M.R., Deaton M.L. (1982) Comparisons of some tests for validation of stochastic simulation models, Commun. Stat. Simul. Comput. 11, 769–799.

    Google Scholar 

  • Ricker W.E. (1984) Computation and uses of central trend lines, Can J. Zool. 62, 1897–1905.

    Google Scholar 

  • Rivington M., Bellocchi G., Matthews K.B., Buchan K. (2005) Evaluation of three model estimations of solar radiation at 24 UK stations, Agr. Forest Meteorol. 135, 228–243.

    Google Scholar 

  • Rivington M, Matthews K.B., Bellocchi G., Buchan K. (2006) Evaluating uncertainty introduced to process-based simulation model estimates by alternative sources of meteorological data, Agr. Syst. 88, 451–471.

    Google Scholar 

  • Rivington M, Matthews K.B., Bellocchi G., Buchan K., Stöckle C.O., Donatelli M. (2007) An integrated assessment approach to conduct analyses of climate change impacts on whole-farm systems, Environ. Modell. Softw. 22, 202–210.

    Google Scholar 

  • Rivington M., Matthews K.B., Buchan K. (2003) Quantifying the uncertainty in spatially-explicit land-use model predictions arising from the use of substituted climate data, in: Post D.A. (Ed.), Proc. MODSIM 2003 International Congress on Modelling and Simulation: Integrative modelling of biophysical, social and economic systems for resource management solutions, 14–17 July, Townsville, Australia, Vol. 4, pp. 1528–1533.

    Google Scholar 

  • Robinson A.P., Ek A.R. (2000) The consequences of hierarchy for modelling in forest ecosystems, Can. J. Forest Res. 30, 1837–1846.

    Google Scholar 

  • Rykiel Jr. E.J. (1996) Testing ecological models: the meaning of validation, Ecol. Model. 90, 229–244.

    Google Scholar 

  • Sage A.P. (1987) Validation, in: Singh M.G. (Ed.), Systems analysis & control encyclopaedia: theory, technology, applications, Pergamon, Oxford, United Kingdom.

    Google Scholar 

  • Sargent R.G. (2001) Verification, validation and accreditation of simulation models, in: Peters B.A., Smith J.S., Medeiros D.J., Rohrer M.W. (Eds.), Proc. 2001 Winter Simulation Conference, December 10–13, Arlington, VA, USA, pp. 106–114.

    Google Scholar 

  • Schlesinger S. (1979) Terminology for model credibility, Simulation 32, 103–104.

    Google Scholar 

  • Scholten H., van der Tol M.W.M. (1998) Quantitative validation of deterministic models: when is a model acceptable? in: Society for Computer Simulation (Ed.), Proceedings of the Summer Computer Simulation Conference, San Diego, CA, USA, pp. 404–409.

    Google Scholar 

  • Schwartz G. (1978) Estimating the dimension of a model, Ann. Stat. 6, 461–464.

    Google Scholar 

  • Seibert J., McDonnell J.J. (2002) On the dialog between experimentalist and modeler in catchment hydrology: use of soft data for multicriteria model calibration, Water Resour. Res. 38, 1241.

    Google Scholar 

  • Seigneur C., Pun B., Pai P., Louis J.F., Solomon P., Emery C., Morris R., Zahniser M., Worsnop D., Koutrakis P., White W., Tombach I. (2000) Guidance for the performance evaluation of three-dimensional air quality modeling systems for particulate matter and visibility, J. Air Waste Manage. Assoc. 50, 588–599.

    CAS  Google Scholar 

  • Shaeffer D.L. (1980) A model evaluation methodology applicable to environmental assessment models, Ecol. Model. 8, 275–295.

    Google Scholar 

  • Sinclair T.R., Seligman N. (2000) Criteria for publishing papers on crop. modelling, Field Crop. Res. 68, 165–172.

    Google Scholar 

  • Smith P., Smith J.U., Powlson D.S., McGill W.B., Arah J.R.M., Chertov O.G., Coleman K., Franko U., Frolking S., Jenkinson D.S., Jensen L.S., Kelly R.H., Klein-Gunnewiek H., Komarov A.S., Li C., Molina J.A.E., Mueller T., Parton W.J., Thomley J.H.M., Whitmore A.P. (1997) A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments, Geoderma 81, 153–225.

    Google Scholar 

  • Sojda R.S. (2004) Empirical evaluation of decision support systems: concepts and an example for trumpeter swan management, in: Pahl-Woslt C., Schmidt S., Rizzoli A.E., Jakeman A.J. (Eds.), Complexity and integrated resources, Trans. 2nd Biennial Meeting of the International Environmental Modelling and Software Society, 14–17 June, Osnabrück, Germany, Vol. 2, pp. 649–655.

    Google Scholar 

  • Soroshian S., Duan Q., Gupta V.K. (1993) Calibration of rainfall-runoff models: application of global optimization to Sacramento Soil Moisture Model, Water Resour. Res. 29, 1185–1194.

    Google Scholar 

  • Stephens M.A. (1974) EDF statistics for goodness of fit and some comparisons, J. Am. Stat. Assoc. 69, 730–737.

    Google Scholar 

  • Sterman J.D. (2000) Business dynamics: systems thinking and modeling for a complex world, Irwin McGraw-Hill, New York, NY, USA.

    Google Scholar 

  • Stöckle C.O., Bellocchi G., Nelson R.L. (1999) Evaluation of the weather generator ClimGen for several world locations, in: Bindi M., Donatelli M., Porter J., van Ittersum M.K. (Eds.), Proc. 7th International Congress for Computer Technology in Agriculture, 15–18 November 1998, Florence, Italy, pp. 34–41.

    Google Scholar 

  • Stöckle C.O., Kjelgaard J., Bellocchi G. (2004) Evaluation of estimated weather data for calculating Penman-Monteith reference crop evapotranspiration, Irrig. Sci. 1, 39–46.

    Google Scholar 

  • Stone M. (1974) Cross-validatory choice and assessment of statistical predictions, J. R. Stat. Soc. Ser. B-Stat. Methodol. 36, 111–147.

    Google Scholar 

  • Sugeno M. (1985) An introductory survey of fuzzy control, Inf. Sci. 36, 59–83.

    Google Scholar 

  • Tedeschi L.O. (2006) Assesment of the adequacy of mathematical models, Agr. Syst. 89, 225–247.

    Google Scholar 

  • Theil H., Cramer J.S., Moerman H., Russchen A. (1970) Economic forecast and policy, 2nd ed., North-Holland Publishing Company, Amsterdam, The Netherlands.

    Google Scholar 

  • Thomann R.V. (1982) Verification of water quality models, J. Env. Eng. Div. 108, 923–940.

    CAS  Google Scholar 

  • Tingem M., Rivington M., Bellocchi G., Azam-Alia S., Colls J. (2009) Adaptation assessments for crop production in response to climate change in Cameroon, Agron. Sustain. Dev. 29, in press.

    Google Scholar 

  • Topp C.F.E., Doyle C.J. (2004) Modelling the comparative productivity and profitability of grass and legume systems of silage production in northern Europe, Grass Forage Sci. 59, 274–292.

    Google Scholar 

  • Trnka M., Eitzinger J., Gruszczynski G., Buchgraber K., Resch R., Schaumberger A. (2006) A simple statistical model for predicting herbage production from permanent grassland, Grass Forage Sci. 61, 253–271.

    Google Scholar 

  • Trnka M., Zlud Z., Eitzinger J., Dubrovský M. (2005) Global solar radiation in Central European lowlands estimated by various empirical formulae, Agr. Forest Meteorol. 131, 54–76.

    Google Scholar 

  • Van Oijen M. (2002) On the use of specific publication criteria for papers on process-based modelling in plant science, Field Crop. Res. 74, 197–205.

    Google Scholar 

  • Versar Inc. (1988) Current and suggested practices in the validation of exposure assessment models, Office of Health and Environmental Assessment, United States environmental Protection Agency, Washington DC, USA.

    Google Scholar 

  • Vichi M., Ruardij P., Baretta J.W. (2004) Link or sink: a modelling interpretation of the open Baltic biogeochemistry, Biogeosciences 1, 79–100.

    CAS  Google Scholar 

  • Vincent L.A. (1998) A technique for the identification of inhomogeneities in Canadian temperature series, J. Climate 11, 1094–1104.

    Google Scholar 

  • Wainwright J., Mulligan M. (2004) Environmental modelling, Wiley & Sons, Chichester.

    Google Scholar 

  • Wallace D.R., Fujii R.U. (1989) Software verification and validation: an overview, IEEE Software 6, 10–17.

    Google Scholar 

  • Wallach D. (2006) Evaluating crop models, in: Wallach D., Makowski D., Jones J.W. (Eds.), Working with dynamic crop models, Elsevier, Amsterdam, The Netherlands, pp. 11–53.

    Google Scholar 

  • Wallach D., Goffinet B. (1989) Mean square error of prediction in models for studying ecological and agronomic systems, Biometrics 43, 561–573.

    Google Scholar 

  • Westrich B. (2008) Model based sediment quality management on river basin scale, in: Sànchez-Marrè M., Béjar J., Comas J., Rizzoli A.E., Guariso G. (Eds.), Integrating sciences and information technology for environmental assessment and decision making, Proc. 4th Biennial Meeting of the International Environmental Modelling and Software Society, 7–10 July, Barcelona, Spain, Vol. 1, pp. 639–646.

    Google Scholar 

  • Whitmore A.P. (1991) A method for assessing the goodness of computer simulations of soil processes, J. Soil Sci. 42, 289–299.

    Google Scholar 

  • Willmott C.J. (1981) On the validation of models, Phys. Geogr. 2, 184–194.

    Google Scholar 

  • Willmott C.J. (1982) Some comments on the evaluation of model performance, Bull. Am. Meteorol. Soc. 63, 1309–1313.

    Google Scholar 

  • Woodward S.J.R. (2001) Validating a model that predicts daily growth and feed quality of New Zealand dairy pastures, Environ. Int. 27, 133–137.

    CAS  Google Scholar 

  • Wright S.A. (2001) Covalidation of dissimilarly structured models, Dissertation, Air Force Institute of Technology, Dayton, OH, USA.

    Google Scholar 

  • Wright G.G., Tapping J., Matthews K.B., Wright R. (2003) Combining metric aerial photography and near-infrared videography to define within-field soil sampling frameworks, GeoCarto International 18, 1–8.

    Google Scholar 

  • Yagow E.R. (1997) Auxiliary procedures for the AGNPS model in urban fringe watersheds. PhD-Thesis, Virginia Polytechnic Institute, Blacksburg, VA, USA.

    Google Scholar 

  • Yang J., Greenwood D.J., Rowell D.L., Wadsworth G.A., Burns I.G. (2000) Statistical methods for evaluating a crop nitrogen simulation model, N-ABLE, Agr. Syst. 64, 37–53.

    Google Scholar 

  • Zacharias S., Coakley C.W. (1993) Comparison of quantitative techniques used for pesticide model validation, American Society of Agricultural Engineers. St. Joseph, MI, USA, ASAE Paper No. 93-2506.

    Google Scholar 

  • Zacharias S., Heatwole C.D., Coakley C.W. (1996) Robust quantitative techniques for validating pesticide transport models, Trans. ASAE 39, 47–54.

    CAS  Google Scholar 

Download references

Acknowledgements

This paper was developed with the support of the Italian Ministry of Agricultural Policies; project SIPEAA (http://www.sipeaa.it), paper No. 36. The authors also gratefully acknowledge the support of the Scottish Government Environment Rural Affairs Department. Thanks also to David Elston and David Walker of Biomathematics and Statistics Scotland (Macaulay Institute, Aberdeen, UK) for constructive criticism and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Bellocchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bellocchi, G., Rivington, M., Donatelli, M., Matthews, K. (2011). Validation of Biophysical Models: Issues and Methodologies. In: Lichtfouse, E., Hamelin, M., Navarrete, M., Debaeke, P. (eds) Sustainable Agriculture Volume 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0394-0_26

Download citation

Publish with us

Policies and ethics