Skip to main content

Greenhouse Gases and Ammonia Emissions from Organic Mixed Crop-Dairy Systems: A Critical Review of Mitigation Options

  • Chapter
  • First Online:
Sustainable Agriculture Volume 2

Abstract

Dairy production systems represent a significant source of air pollutants such as greenhouse gases (GHG), that increase global warming, and ammonia (NH3), that leads to eutrophication and acidification of natural ecosystems. Greenhouse gases and ammonia are emitted both by conventional and organic dairy systems. Several studies have already been conducted to design practices that reduce greenhouse gas and ammonia emissions from dairy systems. However, those studies did not consider options specifically applied to organic farming, as well as the multiple trade-offs occurring between these air pollutants. This article reviews agricultural practices that mitigate greenhouse gas and ammonia emissions. Those practices can be applied to the most common organic dairy systems in northern Europe such as organic mixed crop-dairy systems. The following major points of mitigation options for animal production, crop production and grasslands are discussed. Animal production: the most promising options for reducing greenhouse gas emissions at the livestock management level involve either the improvement of animal production through dietary changes and genetic improvement or the reduction of the replacement rate. The control of the protein intake of animals is an effective means to reduce gaseous emissions of nitrogen, but it is difficult to implement in organic dairy farming systems. Considering the manure handling chain, mitigation options involve housing, storage and application. For housing, an increase in the amounts of straw used for bedding reduces NH3 emissions, while the limitation of CH4 emissions from deep litter is achieved by avoiding anaerobic conditions. During the storage of solid manure, composting could be an efficient mitigation option, depending on its management. Addition of straw to solid manure was shown to reduce CH4 and N2O emissions from the manure heaps. During the storage of liquid manure, emptying the slurry store before late spring is an efficient mitigation option to limit both CH4 and NH3 emissions. Addition of a wooden cover also reduces these emissions more efficiently than a natural surface crust alone, but may increase N2O emissions. Anaerobic digestion is the most promising way to reduce the overall greenhouse gas emissions from storage and land spreading, without increasing NH3 emissions. At the application stage, NH3 emissions may be reduced by spreading manure during the coolest part of the day, incorporating it quickly and in narrow bands. Crop production: the mitigation options for crop production focus on limiting CO2 and N2O emissions. The introduction of perennial crops or temporary leys of longer duration are promising options to limit CO2 emissions by storing carbon in plants or soils. Reduced tillage or no tillage as well as the incorporation of crop residues also favour carbon sequestration in soils, but these practices may enhance N2O emissions. Besides, the improvement of crop N-use efficiency through effective management of manure and slurry, by growing catch crops or by delaying the ploughing of leys, is of prime importance to reduce N2O emissions. Grassland: concerning grassland and grazing management, permanent conversion from arable to grassland provides high soil carbon sequestration while increasing or decreasing the livestock density seems not to be an appropriate mitigation option. From the study of the multiple interrelations between gases and between farm compartments, the following mitigation options are advised for organic mixed crop-dairy systems: (1) actions for increasing energy efficiency or fuel savings because they are beneficial in any case, (2) techniques improving efficiency of N management at field and farm levels because they affect not only N2O and NH3 emissions, but also nitrate leaching, and (3) biogas production through anaerobic digestion of manure because it is a promising efficient method to mitigate greenhouse gas emissions, even if the profitability of this expensive investment needs to be carefully studied. Finally, the way the farmer implements the mitigation options, i.e. his practices, will be a determining factor in the reduction of greenhouse gas and NH3 emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ademe, Aile, Solagro, Trame (2006) La méthanisation à la ferme, Paris, p. 16.

    Google Scholar 

  • Allard V., Soussana J.-F., Falcimagne R., Berbigier P., Bonnefond J.M., Ceschia E., D’hour P., Henault C., Laville P., Martin C., Pinares-Patino C. (2007) The role of grazing management for the net biome productivity and greenhouse gas budget (CO2, N2O and CH4) of semi-natural grassland, Agr. Ecosyst. Environ. 121, 47–58.

    CAS  Google Scholar 

  • Ambus P., Jensen E.S., Robertson G.P. (2001) Nitrous oxide and N-leaching losses from agricultural soil: Influence of crop residue particle size, quality and placement, Phyton-Ann. REI Bot. 41, 7–15.

    CAS  Google Scholar 

  • Ammann C., Flechard C.R., Leifeld J., Neftel A., Fuhrer J. (2007) The carbon budget of newly established temperate grassland depends on management intensity, Agr. Ecosyst. Environ. 121, 5–20.

    CAS  Google Scholar 

  • Amon B., Amon T., Alt C., Moitzi G., Boxberger J. (2001a) Nitrous oxide emissions from cattle production systems and mitigation options, Phyton-Ann. REI Bot. 41, 17–28.

    CAS  Google Scholar 

  • Amon B., Amon T., Boxberger J., Alt C. (2001b) Emissions of NH3, N2O and CH4 from dairy cows housed in a farmyard manure tying stall (housing, manure storage, manure spreading), Nutr. Cycl. Agroecosyst. 60, 103–113.

    CAS  Google Scholar 

  • Amon B., Kryvoruchko V., Amon T., Zechmeister-Boltenstern S. (2006) Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment, Agr. Ecosyst. Environ. 112, 153–162.

    CAS  Google Scholar 

  • Bahn M., Knapp M., Garajova Z., Pfahringer N., Cernusca A. (2006) Root respiration in temperate mountain grasslands differing in land use, Global Change Biol. 12, 995–1006.

    Google Scholar 

  • Balesdent J., Chenu C., Balabane M. (2000) Relationship of soil organic matter dynamics to physical protection and tillage, Soil Till. Res. 53, 215–230.

    Google Scholar 

  • Ball B.C., Scott A., Parker J.P. (1999) Field N2O, CO2 and CH4 fluxes in relation to tillage, compaction and soil quality in Scotland, Soil Till. Res. 53, 29–39.

    Google Scholar 

  • Basso B., Ritchie J.T. (2005) Impact of compost, manure and inorganic fertilizer on nitrate leaching and yield for a 6-year maize-alfalfa rotation in Michigan, Agr. Ecosyst. Environ. 108, 329–341.

    Google Scholar 

  • Beauchemin K.A., Kreuzer M., O’Mara F., McAllister T.A. (2008) Nutritional management for enteric methane abatement: a review, Aust. J. Exp. Agr. 48, 21–27.

    CAS  Google Scholar 

  • Béline F., Martinez J., Chadwick D., Guiziou F., Coste C.M. (1999) Factors affecting nitrogen transformations and related nitrous oxide emissions from aerobically treated piggery slurry, J. Agr. Eng. Res. 73, 235–243.

    Google Scholar 

  • Béline F., Martinez J. (2002) Nitrogen transformations during biological aerobic treatment of pig slurry: effect of intermittent aeration on nitrous oxide emissions, Bioresource Technol. 83, 225–228.

    Google Scholar 

  • Berg W., Brunsch R., Pazsiczki I. (2006) Greenhouse gas emissions from covered slurry compared with uncovered during storage, Agr. Ecosyst. Environ. 112, 129–134.

    CAS  Google Scholar 

  • Berntsen J., Grant R., Olesen J.E., Kristensen I.S., Vinther F.P., Molgaard J.P., Petersen B.M. (2006) Nitrogen cycling in organic farming systems with rotational grass-clover and arable crops, Soil Use Manage. 22, 197–208.

    Google Scholar 

  • Berry P.M., Sylvester-Bradley R., Philipps L., Hatch D.J., Cuttle S.P., Rayns F.W., Gosling P. (2002) Is the productivity of organic farms restricted by the supply of available nitrogen? Soil Use Manage. 18, 248–255.

    Google Scholar 

  • Boadi D., Benchaar C., Chiquette J., Masse D. (2004) Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review, Can. J. Anim. Sci. 84, 319–335.

    Google Scholar 

  • Borjesson P., Berglund M. (2006) Environmental systems analysis of biogas systems - Part 1: Fuel-cycle emissions, Biomass Bioenerg. 30, 469–485.

    Google Scholar 

  • Brink C., Kroeze C., Klimont Z. (2001) Ammonia abatement and its impact on emissions of nitrous oxide and methane - Part 2: application for Europe, Atmos. Environ. 35, 6313–6325.

    CAS  Google Scholar 

  • Brunschwig P., Lamy J.M. (2006) Production à la ferme d’huile végétale et de tourteaux : possibilités et conséquences, Fourrages 187, 329–342.

    Google Scholar 

  • Bussink D.W., Oenema O. (1998) Ammonia volatilization from dairy farming systems in temperate areas: a review, Nutr. Cycl. Agroecosyst. 51, 19–33.

    Google Scholar 

  • Carter M.S., Ambus P. (2006) Biologically fixed N2 as a source for N2O production in a grass-clover mixture, measured by N-15(2), Nutr. Cycl. Agroecosyst. 74, 13–26.

    CAS  Google Scholar 

  • Ceotto E., Borrelli L., Marchetti R., Tomasoni C. (2006) Effect of integrated forage rotation and manure management systems on soil carbon storage, in: Ramiran International Conference: Technology for recycling of manure and organic residues in a whole-farm perspective, DIAS, pp. 29–32.

    Google Scholar 

  • Chadwick D.R. (2005) Emissions of ammonia, nitrous oxide and methane from cattle manure heaps: effect of compaction and covering, Atmos. Environ. 39, 787–799.

    CAS  Google Scholar 

  • Chadwick D.R., Sneath R.W., Phillips V.R., Pain B.F. (1999) A UK inventory of nitrous oxide emissions from farmed livestock, Atmos. Environ. 33, 3345–3354.

    CAS  Google Scholar 

  • Chapuis-Lardy L., Wrage N., Metay A., Chottes J.L., Bernouxs M. (2007) Soils, a sink for N2O? A review, Global Change Biol. 13, 1–17.

    Google Scholar 

  • Christopher S.F., Lal R. (2007) Nitrogen management affects carbon sequestration in North American cropland soils, Crit. Rev. Plant Sci. 26, 45–64.

    CAS  Google Scholar 

  • Clemens J., Ahlgrimm H.J. (2001) Greenhouse gases from animal husbandry: mitigation options, Nutr. Cycl. Agroecosyst. 60, 287–300.

    Google Scholar 

  • Clemens J., Trimborn M., Weiland P., Amon B. (2006) Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry, Agr. Ecosyst. Environ. 112, 171–177.

    CAS  Google Scholar 

  • Couvreur J.-P. (2006) Quelques leviers pour maîtriser la consommation d’énergie et optimiser la mécanisation de l’exploitation, Fourrages 187, 301–310.

    Google Scholar 

  • Dalgaard T., Heidmann T., Mogensen L. (2002) Potential N-losses in three scenarios for conversion to organic farming in a local area of Denmark, Eur. J. Agron. 16, 207–217.

    Google Scholar 

  • David C., Jeuffroy M.H., Laurent F., Mangin M., Meynard J.M. (2005) The assessment of Azodyn-Org model for managing nitrogen fertilization of organic winter wheat, Eur. J. Agron. 23, 225–242.

    CAS  Google Scholar 

  • de Klein C.A.M., Eckard R.J. (2008) Targeted technologies for nitrous oxide abatement from animal agriculture, Aust. J. Exp. Agr. 48, 14–20.

    Google Scholar 

  • del Prado A., Merino P., Estavillo J.M., Pinto M., González-Murua C. (2006) Nutrient Cycling in Agroecosystems, 74, 229–243. DOI: 10.1007/S10705-006-9001-6

    Google Scholar 

  • Di H.J., Cameron K.C. (2002) Nitrate leaching in temperate agroecosystems: sources, factors and mitigating strategies, Nutr. Cycl. Agroecosyst. 64, 237–256.

    CAS  Google Scholar 

  • Dyer J.A., Desjardins R.L. (2003) Simulated farm fieldwork, energy consumption and related greenhouse gas emissions in Canada, Biosyst. Eng. 85, 503–513.

    Google Scholar 

  • Eriksen J., Askegaard M., Kristensen K. (1999) Nitrate leaching in an organic dairy/crop rotation as affected by organic manure type, livestock density and crop, Soil Use Manage. 15, 176–182.

    Google Scholar 

  • Eriksen J., Pedersen L., Jorgensen J.R. (2006) Nitrate leaching and bread-making quality of spring wheat following cultivation of different grasslands, Agr. Ecosyst. Environ. 116, 165–175.

    CAS  Google Scholar 

  • Eriksen J., Vinther F.P., Soegaard K. (2004) Nitrate leaching and N-2-fixation in grasslands of different composition, age and management, J. Agr. Sci. 142, 141–151.

    CAS  Google Scholar 

  • EU (1991) Council Regulation No. 2092/1991 of 24 June 1991, Off. J. Eur. Communities L198, 1–5.

    Google Scholar 

  • EU (1999) Council Regulation No. 1804/1999 of 19 July 1999, Off. J. Eur. Communities L222, 1–28.

    Google Scholar 

  • EU (2006) Council Regulation No. 1791/2006 of 20 November 2006, Off. J. Eur. Communities L363, 1–80.

    Google Scholar 

  • Ferm M. (1998) Atmospheric ammonia and ammonium transport in Europe and critical loads: a review, Nutr. Cycl. Agroecosyst. 51, 5–17.

    CAS  Google Scholar 

  • Ferm M., Kasimir-Klemedtsson A., Weslien P., Klemedtsson L. (1999) Emission of NH3 and N2O after spreading of pig slurry by broadcasting or band spreading, Soil Use Manage. 15, 27–33.

    Google Scholar 

  • Filipovic D., Kosutic S., Gospodaric Z., Zimmer R., Banaj D. (2006) The possibilities of fuel savings and the reduction of CO2 emissions in the soil tillage in Croatia, Agr. Ecosyst. Environ. 115, 290–294.

    Google Scholar 

  • Flessa H., Beese F. (2000) Laboratory estimates of trace gas emissions following surface application and injection of cattle slurry, J. Environ. Qual. 29, 262–268.

    CAS  Google Scholar 

  • Flessa H., Ruser R., Dorsch P., Kamp T., Jimenez M.A., Munch J.C., Beese F. (2002) Integrated evaluation of greenhouse gas emissions (CO2, CH4, N2O) from two farming systems in southern Germany, Agr. Ecosyst. Environ. 91, 175–189.

    CAS  Google Scholar 

  • Foereid B., Hogh-Jensen H. (2004) Carbon sequestration potential of organic agriculture in northern Europe - a modelling approach, Nutr. Cycl. Agroecosyst. 68, 13–24.

    CAS  Google Scholar 

  • Fontaine S., Bardoux G., Abbadie L., Mariotti A. (2004) Carbon input to soil may decrease soil carbon content, Ecol. Lett. 7, 314–320.

    Google Scholar 

  • Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey D.W., Haywood J., Lean J., Lowe D.C., Myhre G., Nganga J., Prinn R., Raga G., Schulz M., Van Dorland R. (2007) Changes in Atmospheric Constituents and in Radiative Forcing, in: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. (Eds.), Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  • Freibauer A., Rounsevell M.D.A., Smith P., Verhagen J. (2004) Carbon sequestration in the agricultural soils of Europe, Geoderma 122, 1–23.

    CAS  Google Scholar 

  • Gibbs P.A., Parkinson R.J., Misselbrook T.H., Burchett S. (2002) Environmental impacts of cattle manure composting, in: Microbiology of Composting, Springer-Verlag Berlin, Berlin, pp. 445–456.

    Google Scholar 

  • Gregorich E.G., Rochette P., VandenBygaart A.J., Angers D.A. (2005) Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada, Soil Till. Res. 83, 53–72.

    Google Scholar 

  • Guarino A., Fabbri C., Brambilla M., Valli L., Navarotto P. (2006) Evaluation of simplified covering systems to reduce gaseous emissions from livestock manure storage, Trans. ASABE 49, 737–747.

    CAS  Google Scholar 

  • Hansen S. (1996) Effects of manure treatment and soil compaction on plant production of a dairy farm system converting to organic farming practice, Agr. Ecosyst. Environ. 56, 173–186.

    Google Scholar 

  • Hansen M.N., Sommer S.G., Henriksen K. (2002) Methane emissions from livestock manure - effects of storage conditions and climate, in: Petersen S., Olesen J. (Eds.), GHG inventories for agriculture in the nordic countries. DIAS (Danish Institute of Agricultural Science), Helsingor, Denmark, pp. 45–53.

    Google Scholar 

  • Häring A.M. (2003) Organic dairy farms in the EU: production systems, economics and future development, Livest. Prod. Sci. 80, 89–97.

    Google Scholar 

  • Hays M.D., Fine P.M., Geron C.D., Kleeman M.J., Gullett B.K. (2005) Open burning of agricultural biomass: Physical and chemical properties of particle-phase emissions, Atmos. Environ. 39, 6747–6764.

    CAS  Google Scholar 

  • Hensen A., Groot T.T., van den Bulk W.C.M., Vermeulen A.T., Olesen J.E., Schelde K. (2006) Dairy farm CH4 and N2O emissions, from one square metre to the full farm scale, Agr. Ecosyst. Environ. 112, 146–152.

    CAS  Google Scholar 

  • Hindrichsen I.K., Wettstein H.R., Machmuller A., Kreuzer M. (2006) Methane emission, nutrient degradation and nitrogen turnover in dairy cows and their slurry at different milk production scenarios with and without concentrate supplementation, Agr. Ecosyst. Environ. 113, 150–161.

    CAS  Google Scholar 

  • Holland J.M. (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence, Agr. Ecosyst. Environ. 103, 1–25.

    Google Scholar 

  • Hu S., Grunwald N.J., van Bruggen A.H.C., Gamble G.R., Drinkwater L.E., Shennan C., Demment M.W. (1997) Short-term effects of cover crop incroporation on soil carbon pools and nitrogen availability, Soil Sci. Soc. Am. J. 61, 901–911.

    CAS  Google Scholar 

  • Husted S. (1994) Seasonal variation in methane emission from stored slurry and solid manures, J. Environ. Qual. 23, 585–592.

    CAS  Google Scholar 

  • INRA (2002) Stocker du carbone dans les sols agricoles en France? Expertise scientifique collective, in: Arrouays D., Balesdent J., Germon J.C., Jayet P.A., Soussana J.F., Stengel P. (Eds.), Institut National de la Recherche Agronomique (INRA), Paris, p. 332.

    Google Scholar 

  • IPCC (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of working group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, in: Parry M.L., Canziani O.F., Palutikof J.P., Van der Linden P.J., Hanson C.E. (Eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

    Google Scholar 

  • Johnson J.M.-F., Franzluebbers A.J., Weyers S.L., Reicosky D.C. (2007) Agricultural opportunities to mitigate greenhouse gas emissions, Environ. Pollut. 150, 107–124.

    CAS  Google Scholar 

  • Kebreab E., Clark K., Wagner-Riddle C., France J. (2006) Methane and nitrous oxide emissions from Canadian animal agriculture: A review, Can. J. Anim. Sci. 86, 135–158.

    CAS  Google Scholar 

  • Keppler F., Hamilton J.T.G., Brass M., Rockmann T. (2006) Methane emissions from terrestrial plants under aerobic conditions, Nature 439, 187–191.

    PubMed  CAS  Google Scholar 

  • Kern J.S., Johnson M.G. (1993) Conservation tillage impacts on national soil and atmospheric carbon levels, Soil Sci. Soc. Am. J. 57, 200–210.

    Google Scholar 

  • Kirchmann H., Bernal M.P. (1997) Organic waste treatment and C stabilization efficiency, Soil Biol. Biochem. 29, 1747–1753.

    CAS  Google Scholar 

  • Kuikman P.J., Velthof G.L., Oenema O. (2004) Controlling nitrous oxide emissions from agriculture: experience from The Netherlands, in: Hatch D.J., Chadwick D.R., Jarvis S.C., Roker J.A. (Eds.), Controlling nitrogen flows and losses, 12th Nitrogen Workshop, Wageningen Academic Publishers, University of Exeter, UK.

    Google Scholar 

  • Kulling D.R., Menzi H., Sutter F., Lischer P., Kreuzer M. (2003) Ammonia, nitrous oxide and methane emissions from differently stored dairy manure derived from grass- and hay-based rations, Nutr. Cycl. Agroecosyst. 65, 13–22.

    Google Scholar 

  • Lal R. (2004a) Agricultural activities and the global carbon cycle, Nutr. Cycl. Agroecosyst. 70, 103–116.

    CAS  Google Scholar 

  • Lal R. (2004b) Soil carbon sequestration to mitigate climate change, Geoderma 123, 1–22.

    CAS  Google Scholar 

  • Le Mer J., Roger P. (2001) Production, oxidation, emission and consumption of methane by soils: A review, Eur. J. Soil Biol. 37, 25–50.

    Google Scholar 

  • Ledgard S.F. (2001) Nitrogen cycling in low input legume-based agriculture, with emphasis on legume/grass pastures, Plant Soil 228, 43–59.

    CAS  Google Scholar 

  • Ledgard S., Steele K.W. (1992) Biological nitrogen fixation in mixed legume/grass pastures, Plant Soil 141, 137–153.

    CAS  Google Scholar 

  • Lovett D.K., Shalloo L., Dillon P., O’Mara F.P. (2006) A systems approach to quantify greenhouse gas fluxes from pastoral dairy production as affected by management regime, Agr. Syst. 88, 156–179.

    Google Scholar 

  • Malgeryd J. (1998) Technical measures to reduce ammonia losses after spreading of animal manure, Nutr. Cycl. Agroecosyst. 51, 51–57.

    Google Scholar 

  • Marshall E.J.P., Moonen A.C. (2002) Field margins in northern Europe: their functions and interactions with agriculture, Agr. Ecosyst. Environ. 89, 5–21.

    Google Scholar 

  • Martin C., Morgavi D., Doreau M., Jouany J.P. (2006) Comment réduire la production de méthane chez les ruminants? Fourrages 187, 283–300.

    Google Scholar 

  • Martin C., Rouel J., Jouany J.P., Doreau M., Chilliard Y. (2008) Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil, J. Anim. Sci. 2642–2650.

    Google Scholar 

  • Martinez J., Guiziou F., Peu P., Gueutier V. (2003) Influence of treatment techniques for pig slurry on methane emissions during subsequent storage, Biosyst. Eng. 85, 347–354.

    Google Scholar 

  • Mathieu O., Leveque J., Henault C., Milloux M.J., Bizouard F., Andreux F. (2006) Emissions and spatial variability of N2O, N2and nitrous oxide mole fraction at the field scale, revealed with N-15 isotopic techniques, Soil Biol. Biochem. 38, 941–951.

    CAS  Google Scholar 

  • McAllister T.A., Okine E.K., Mathison G.W., Cheng K.J. (1996) Dietary, environmental and microbiological aspects of methane production in ruminants, Can. J. Anim. Sci. 76, 231–243.

    CAS  Google Scholar 

  • McCaughey W.P., Wittenberg K., Corrigan D. (1997) Methane production by steers on pasture, Can. J. Anim. Sci. 77, 519–524.

    Google Scholar 

  • McCaughey W.P., Wittenberg K., Corrigan D. (1999) Impact of pasture type on methane production by lactating beef cows, Can. J. Anim. Sci. 79, 221–226.

    Google Scholar 

  • McGinn S.M. (2006) Measuring greenhouse gas emissions from point sources in agriculture, Can. J. Soil Sci. 86, 355–371.

    CAS  Google Scholar 

  • McNeill A.M., Eriksen J., Bergstrom L., Smith K.A., Marstorp H., Kirchmann H., Nilsson I. (2005) Nitrogen and sulphur management: challenges for organic sources in temperate agricultural systems, Soil Use Manage. 21, 82–93.

    Google Scholar 

  • Mills J.A.N., Dijkstra J., Bannink A., Cammell S.B., Kebreab E., France J. (2001) A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow: Model development, evaluation, and application, J. Anim. Sci. 79, 1584–1597.

    PubMed  CAS  Google Scholar 

  • Misselbrook T.H., Brookman S.K.E., Smith K.A., Cumby T., Williams A.G., McCrory D.F. (2005) Crusting of stored dairy slurry to abate ammonia emissions: Pilot-scale studies, J. Environ. Qual. 34, 411–419.

    PubMed  CAS  Google Scholar 

  • Monteny G.J., Bannink A., Chadwick D. (2006) Greenhouse gas abatement strategies for animal husbandry, Agr. Ecosyst. Environ. 112, 163–170.

    CAS  Google Scholar 

  • Monteny G.J., Groenestein C.M., Hilhorst M.A. (2001) Interactions and coupling between emissions of methane and nitrous oxide from animal husbandry, Nutr. Cycl. Agroecosyst. 60, 123–132.

    CAS  Google Scholar 

  • Morvan T., Nicolardot B., Pean L. (2006) Biochemical composition and kinetics of C and N mineralization of animal wastes: a typological approach, Biol. Fert. Soils 42, 513–522.

    Google Scholar 

  • Mosier A., Kroeze C., Nevison C., Oenema O., Seitzinger S., van Cleemput O. (1998) Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle, Nutr. Cycl. Agroecosyst. 52, 225–248.

    CAS  Google Scholar 

  • Mosimann E., Suter D. (2003) Autonomie en protéines et environnement: le compromis helvétique, Fourrages 175, 333–345.

    Google Scholar 

  • Mustin M. (1987) Le compost - Gestion de la matière organique, Dubusc F., 954 p.

    Google Scholar 

  • Nicholas P.K., Padel S., Cuttle S.P., Fowler S.M., Hovi M., Lampkin N.H., Weller R.F. (2004) Organic dairy production: a review, Biol. Agric. Hortic. 22, 1–58.

    Google Scholar 

  • Oenema O., Velthof G., Kuikman P. (2001) Technical and policy aspects of strategies to decrease greenhouse gas emissions from agriculture, Nutr. Cycl. Agroecosyst. 60, 301–315.

    Google Scholar 

  • Oenema O., Velthof G.L., Yamulki S., Jarvis S.C. (1997) Nitrous oxide emissions from grazed grassland, Soil Use Manage. 13, 288–295.

    Google Scholar 

  • Oenema O., Wrage N., Velthof G.L., van Groenigen J.W., Dolfing J., Kuikman P.J. (2005) Trends in global nitrous oxide emissions from animal production systems, Nutr. Cycl. Agroecosyst. 72, 51–65.

    CAS  Google Scholar 

  • Olesen J.E., Schelde K., Weiske A., Weisbjerg M.R., Asman W.A.H., Djurhuus J. (2006) Modelling greenhouse gas emissions from European conventional and organic dairy farms, Agr. Ecosyst. Environ. 112, 207–220.

    CAS  Google Scholar 

  • Peigne J., Girardin P. (2004) Environmental impacts of farm-scale composting practices, Water Air Soil Pollut. 153, 45–68.

    CAS  Google Scholar 

  • Petersen S.O. (1999) Nitrous oxide emissions from manure and inorganic fertilizers applied to spring barley, J. Environ. Qual. 28, 1610–1618.

    CAS  Google Scholar 

  • Petersen S.O., Amon B., Gattinger A. (2005) Methane oxidation in slurry storage surface crusts, J. Environ. Qual. 34, 455–461.

    PubMed  CAS  Google Scholar 

  • Petersen S.O., Regina K., Pollinger A., Rigler E., Valli L., Yamulki S., Esala M., Fabbri C., Syvasalo E., Vinther F.P. (2006) Nitrous oxide emissions from organic and conventional crop rotations in five European countries, Agr. Ecosyst. Environ. 112, 200–206.

    CAS  Google Scholar 

  • Pflimlin A., Kempf M. (2002) Trends of the organic dairy industry in some European countries, 9es Rencontres autour des Recherches sur les Ruminants, Paris, France, 4–5 decembre 2002, pp. 215–218.

    Google Scholar 

  • Pinares-Patino C.S., Baumont R., Martin C. (2003) Methane emissions by Charolais cows grazing a monospecific pasture of timothy at four stages of maturity, Can. J. Anim. Sci. 83, 769–777.

    Google Scholar 

  • Pinares-Patino C.S., D’Hour P., Jouany J.-P., Martin C. (2007) Effects of stocking rate on methane and carbon dioxide emissions from grazing cattle, Agr. Ecosyst. Environ. 121, 30–46.

    CAS  Google Scholar 

  • Rasmussen P.E., Douglas C.L., Collins H.P., Albrecht S.L. (1998) Long-term cropping system on mineralizable nitrogen in soil, Soil Biol. Biochem. 30, 1829–1837.

    CAS  Google Scholar 

  • Rees R.M., Bingham I.J., Baddeley J.A., Watson C.A. (2005) The role of plants and land management in sequestering soil carbon in temperate arable and grassland ecosystems, Geoderma 128, 130–154.

    CAS  Google Scholar 

  • Reicosky D.C., Reeves D.W., Prior S.A., Runion G.B., Rogers H.H., Raper R.L. (1999) Effects of residue management and controlled traffic on carbon dioxide and water loss, Soil Till. Res. 52, 153–165.

    Google Scholar 

  • Rochette P., Janzen H.H. (2005) Towards a revised coefficient for estimating N2O emissions from legumes, Nutr. Cycl. Agroecosyst. 73, 171–179.

    CAS  Google Scholar 

  • Rubaek G.H., Henriksen K., Petersen J., Rasmussen B., Sommer S.G. (1996) Effects of application technique and anaerobic digestion on gaseous nitrogen loss from animal slurry applied to ryegrass (Lolium perenne), J. Agr. Sci. 126, 481–492.

    Google Scholar 

  • Saggar S., Bolan N.S., Bhandral R., Hedley C.B., Luo J. (2004) A review of emissions of methane, ammonia, and nitrous oxide from animal excreta deposition and farm effluent application in grazed pastures, New Zeal J. Agr. Res. 47, 513–544.

    CAS  Google Scholar 

  • Schils R.L.M., Olesen J.E., del Prado A., Soussana J.F. (2007) A review of farm level modelling approaches for mitigating greenhouse gas emissions from ruminant livestock systems, Livest. Sci. 112, 240–251.

    Google Scholar 

  • Schils R.L.M., Verhagen A., Aarts H.F.M., Kuikman P.J., Sebek L.B.J. (2006) Effect of improved nitrogen management on greenhouse gas emissions from intensive dairy systems in the Netherlands, Global Change Biol. 12, 382–391.

    Google Scholar 

  • Schils R.L.M., Verhagen A., Aarts H.F.M., Sebek L.B.J. (2005) A farm level approach to define successful mitigation strategies for GHG emissions from ruminant livestock systems, Nutr. Cycl. Agroecosyst. 71, 163–175.

    Google Scholar 

  • Shepherd M.A. (2000) The environmental implications of manure use in organic farming systems, ADAS, p. 20.

    Google Scholar 

  • Shepherd M., Pearce B., Philipps L., Cuttle S., Bhogal A., Costigan P., Unwin R. (2003) An assessment of the environmental impacts of organic farming, DEFRA, p. 80.

    Google Scholar 

  • Six J., Ogle S.M., Breidt F.J., Conant R.T., Mosier A.R., Paustian K. (2004) The potential to mitigate global warming with no-tillage management is only realized when practised in the long term, Global Change Biol. 10, 155–160.

    Google Scholar 

  • Smith P. (2004) Carbon sequestration in croplands: the potential in Europe and the global context, Eur. J. Agron. 20, 229–236.

    CAS  Google Scholar 

  • Smith K.A., Conen F. (2004) Impacts of land management on fluxes of trace greenhouse gases, Soil Use Manage. 20, 255–263.

    Google Scholar 

  • Smith P., Goulding K.W., Smith K.A., Powlson D.S., Smith J.U., Falloon P., Coleman K. (2001) Enhancing the carbon sink in European agricultural soils: including trace gas fluxes in estimates of carbon mitigation potential, Nutr. Cycl. Agroecosyst. 60, 237–252.

    Google Scholar 

  • Smith P., Martino D., Cai Z.C., Gwary D., Janzen H., Kumar P., McCarl B., Ogle S., O’Mara F., Rice C., Scholes B., Sirotenko O., Howden M., McAllister T., Pan G.X., Romanenkov V., Schneider U., Towprayoon S. (2007) Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture, Agr. Ecosyst. Environ. 118, 6–28.

    Google Scholar 

  • Smith P., Martino D., Cai Z., Gwary D., Janzen H., Kumar P., McCarl B., Ogle S., O’Mara F., Rice C., Scholes B., Sirotenko O., Howden M., McAllister T., Pan G.X., Romanenkov V., Schneider U., Towprayoon S., Wattenbach M., Smith J. (2008) Greenhouse gas mitigation in agriculture, Philos. T. Roy. Soc. B-Biol. Sci. 363, 789–813.

    CAS  Google Scholar 

  • Smith P., Milne R., Powlson D.S., Smith J.U., Falloon P., Coleman K. (2000) Revised estimates of the carbon mitigation potential of UK agricultural land, Soil Use Manage. 16, 293–295.

    Google Scholar 

  • Smith P., Powlson D.S., Glendining M.J., Smith J.U. (1997) Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments, Global Change Biol. 3, 67–79.

    Google Scholar 

  • Sneath R.W., Beline F., Hilhorst M.A., Peu P. (2006) Monitoring GHG from manure stores on organic and conventional dairy farms, Agr. Ecosyst. Environ. 112, 122–128.

    CAS  Google Scholar 

  • Sommer S.G. (2001) Effect of composting on nutrient loss and nitrogen availability of cattle deep litter, Eur. J. Agron. 14, 123–133.

    Google Scholar 

  • Sommer S.G., Hutchings N.J. (2001) Ammonia emission from field applied manure and its reduction - invited paper, Eur. J. Agron. 15, 1–15.

    CAS  Google Scholar 

  • Sommer S.G., Olesen J.E. (2000) Modelling ammonia emission from animal slurry applied with trail hoses to cereals, Atmos. Environ. 34, 2361–2372.

    CAS  Google Scholar 

  • Sommer S.G., Christensen B.T., Nielsen N.E., Schjorring J.K. (1993) Ammonia volatilization during storage of cattle and pig slurry: effect of surface cover, J. Agr. Sci. 121, 63–71.

    CAS  Google Scholar 

  • Sommer S.G., Petersen S.O., Sogaard H.T. (2000) Greenhouse gas emission from stored livestock slurry, J. Environ. Qual. 29, 744–751.

    CAS  Google Scholar 

  • Sorensen P., Weisbjerg M.R., Lund P. (2003) Dietary effects on the composition and plant utilization of nitrogen in dairy cattle manure, J. Agr. Sci. 141, 79–91.

    CAS  Google Scholar 

  • Soussana J.F., Allard V., Pilegaard K., Ambus P., Amman C., Campbell C., Ceschia E., Clifton-Brown J., Czobel S., Domingues R., Flechard C., Fuhrer J., Hensen A., Horvath L., Jones M., Kasper G., Martin C., Nagy Z., Neftel A., Raschi A., Baronti S., Rees R.M., Skiba U., Stefani P., Manca G., Sutton M., Tuba Z., Valentini R. (2007) Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites, Agr. Ecosyst. Environ. 121, 121–134.

    CAS  Google Scholar 

  • Soussana J.F., Loiseau P., Vuichard N., Ceschia E., Balesdent J., Chevallier T., Arrouays D. (2004) Carbon cycling and sequestration opportunities in temperate grasslands, Soil Use Manage. 20, 219–230.

    Google Scholar 

  • Steinfeld H., Gerber P., Wassenaar T., Castel V., Rosales M., de Haan C. (2006) Livestock’s long shadow - environmental issues and options. in: FAO (Ed.), FAO, Rome, p. 390.

    Google Scholar 

  • Steinshamn H., Thuen E., Bleken M.A., Brenoe U.T., Ekerholt G., Yri C. (2004) Utilization of nitrogen (N) and phosphorus (P) in an organic dairy farming system in Norway, Agr. Ecosyst. Environ.104, 509–522.

    CAS  Google Scholar 

  • Stockdale E.A., Rees R.M. (1995) Release of nitrogen from plant and animal residues and consequent plant uptake efficiency, Biol. Agric. Hortic. 11, 229–245.

    Google Scholar 

  • Stockdale E.A., Lampkin N.H., Hovi M., Keatinge R., Lennartsson E.K.M., Macdonald D.W., Padel S., Tattersall F.H., Wolfe M.S., Watson C.A. (2001) Agronomic and environmental implications of organic farming systems, Adv. Agron. 70, 261–327.

    Google Scholar 

  • Stolze M., Piorr A., Haring A., Dabbert S. (2000) The Environmental Impacts of Organic Farming in Europe, in: Dabbert S., Lampkin N., Michelsen J., Nieberg H., Zanoli R. (Eds.), Organic Farming in Europe: Economics and Policy. Dabbert S. - University of Hohenheim, Stuttgart-Hohenheim, p. 127.

    Google Scholar 

  • Stopes C., Lord E.I., Philipps L., Woodward L. (2002) Nitrate leaching from organic farms and conventional farms following best practice, Soil Use Manage. 18, 256–263.

    Google Scholar 

  • Sutton M.A., Milford C., Nemitz E., Theobald M.R., Hill P.W., Fowler D., Schjoerring J.K., Mattsson M.E., Nielsen K.H., Husted S., Erisman J.W., Otjes R., Hensen A., Mosquera J., Cellier P., Loubet B., David M., Genermont S., Neftel A., Blatter A., Herrmann B., Jones S.K., Horvath L., Fuhrer E.C., Mantzanas K., Koukoura Z., Gallagher M., Williams P., Flynn M., Riedo M. (2001) Biosphere-atmosphere interactions of ammonia with grasslands: Experimental strategy and results from a new European initiative, Plant Soil 228, 131–145.

    CAS  Google Scholar 

  • Sutton M.A., Pitcairn C.E.R., Fowler D. (1993) The exchange of ammonia between the atmosphere and plant communities, Adv. Ecol. Res. 24, 301–393.

    CAS  Google Scholar 

  • Syväsalo E., Regina K., Turtola E., Lemola R., Esala M. (2006) Fluxes of nitrous oxide and methane, and nitrogen leaching from organically and conventionally cultivated sandy soil in western Finland, Agr. Ecosyst. Environ. 113, 342–348.

    Google Scholar 

  • Tavendale M.H., Lane G.A., Schreurs N.M., Fraser K., Meagher L.P. (2005) The effects of condensed tannins from Dorycnium rectum on skatole and indole ruminal biogenesis for grazing sheep, Aust. J. Agr. Res. 56, 1331–1337.

    CAS  Google Scholar 

  • Theobald M.R., Milford C., Hargreaves K.J., Sheppard L.J., Nemitz E., Tang Y.S., Phillips V.R., Sneath R., McCartney L., Harvey F.J., Leith I.D., Cape J.N., Fowler D., Sutton M.A. (2002) Potential for ammonia recapture by farm woodlands: design and application of a new experimental facility, in: Optimizing nitrogen management in food and energy production and environmental protection, 2nd International Nitrogen Conference, Potomac, Maryland, USA, 14–18 October 2001, A.A. Balkema Publishers, Lisse Netherlands.

    Google Scholar 

  • Vaarst M., Padel S., Hovi M., Younie D., Sundrum A. (2005) Sustaining animal health and food safety in European organic livestock farming, Livest. Prod. Sci. 94, 61–69.

    Google Scholar 

  • Vellinga T.V., van den Pol-van Dasselaar A., Kuikman P.J. (2004) The impact of grassland ploughing on CO2 and N2O emissions in the Netherlands, Nutr. Cycl. Agroecosyst. 70, 33–45.

    CAS  Google Scholar 

  • Velthof G.L., van Beusichem M.L., Oenema O. (1998) Mitigation of nitrous oxide emission from dairy farming systems, Environ. Pollut. 102, 173–178.

    CAS  Google Scholar 

  • Velthof G.L., Kuikman P.J., Oenema O. (2002) Nitrous oxide emission from soils amended with crop residues, Nutr. Cycl. Agroecosyst. 62, 249–261.

    CAS  Google Scholar 

  • Vleeshouwers L.M., Verhagen A. (2002) Carbon emission and sequestration by agricultural land use: a model study for Europe, Global Change Biol. 8, 519–530.

    Google Scholar 

  • Watson C.A., Atkinson D., Gosling P., Jackson L.R., Rayns F.W. (2002) Managing soil fertility in organic farming systems, Soil Use Manage. 18, 239–247.

    Google Scholar 

  • Watson C.A., Oborn I., Eriksen J., Edwards A.C. (2005) Perspectives on nutrient management in mixed farming systems, Soil Use Manage. 21, 132–140.

    Google Scholar 

  • Webb J., Chadwick D., Ellis S. (2004) Emissions of ammonia and nitrous oxide following incorporation into the soil of farmyard manures stored at different densities, Nutr. Cycl. Agroecosyst. 70, 67–76.

    CAS  Google Scholar 

  • Webb J., Menzi H., Pain B.F., Misselbrook T.H., Dammgen U., Hendriks H., Dohler H. (2005) Managing ammonia emissions from livestock production in Europe, Environ. Pollut. 135, 399–406.

    CAS  Google Scholar 

  • Weiske A., Vabitsch A., Olesen J.E., Schelde K., Michel J., Friedrich R., Kaltschmitt M. (2006) Mitigation of greenhouse gas emissions in European conventional and organic dairy farming, Agr. Ecosyst. Environ. 112, 221–232.

    CAS  Google Scholar 

  • Weller R.F. (2002) A comparison of two systems of organic milk production, in: Kyriazakis Z. (Ed.), Proceedings of Organic Meat and Milk for Ruminants, EAAP Publication, Athens, pp. 111–116.

    Google Scholar 

  • West T.O., Post W.M. (2002) Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis, Soil Sci. Soc. Am. J. 66, 1930–1946.

    CAS  Google Scholar 

  • West T.O., Six J. (2007) Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity, Climatic Change 80, 25–41.

    CAS  Google Scholar 

  • WHO (2004) Health aspects of air pollution: Results from the WHO project systematic review of health aspects of air pollution in Europe, p. 24.

    Google Scholar 

  • Woodward S.L., Waghorn G.C., Lassey K.R., Laboyrie P.G. (2002) Does feeding sulla (Hedysarum coronarium) reduce methane emissions from dairy cows? Proc. N.Z. Soc. Anim. Prod. 62, 227–230.

    Google Scholar 

  • Wright A.L., Dou F., Hons F.M. (2007) Crop species and tillage effects on carbon sequestration in subsurface soil, Soil Sci. 172, 124–131.

    CAS  Google Scholar 

  • Wulf S., Maeting M., Clemens J. (2002a) Application technique and slurry co-fermentation effects on ammonia, nitrous oxide, and methane emissions after spreading: II. Greenhouse gas emissions, J. Environ. Qual. 31, 1795–1801.

    PubMed  CAS  Google Scholar 

  • Wulf S., Maeting M., Clemens J. (2002b) Application technique and slurry co-fermentation effects on ammonia, nitrous oxide, and methane emissions after spreading: I. Ammonia volatilization, J. Environ. Qual. 31, 1789–1794.

    PubMed  CAS  Google Scholar 

  • Yamulki S. (2006) Effect of straw addition on nitrous oxide and methane emissions from stored farmyard manures, Agr. Ecosyst. Environ. 112, 140–145.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Novak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Novak, S.M., Fiorelli, J.L. (2011). Greenhouse Gases and Ammonia Emissions from Organic Mixed Crop-Dairy Systems: A Critical Review of Mitigation Options. In: Lichtfouse, E., Hamelin, M., Navarrete, M., Debaeke, P. (eds) Sustainable Agriculture Volume 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0394-0_24

Download citation

Publish with us

Policies and ethics