Skip to main content

Bioenergetics in a Primordial Cyanobacterium Gloeobacter violaceus PCC 7421

  • Chapter
  • First Online:
Bioenergetic Processes of Cyanobacteria

Abstract

Bioenergetics of a primordial cyanobacterium Gloeobacter violaceus PCC 7421 were discussed based on genome information and experimental results. Absence of thylakoid membranes in this species induced inevitable coupling of the two electron transfer systems, i.e. photosynthesis and respiration, on cytoplasmic membranes by sharing common components. There were multiple pathways for a respiratory electron transfer system, and they affected the redox state of quinone molecules in the pool through the redox equilibrium among components. Even though experimental analysis on this species was not abundant, a principal point of the energetics is now becoming clear. In addition, a whole genome analysis and comparative genomics brought about many important informations on the components for photosynthesis, respiration, metabolism, and regulation. In many cases, this species lacks genes related to bioenergetics, however malfunction of the system was not necessarily observed, indicating presence of an alternative way to establish reaction systems found in other cyanobacterial species. By a combination of the two kinds of information, we discussed the bioenergetics in the unique species, G. violaceus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN and DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289: 1902–1906

    Article  PubMed  Google Scholar 

  • Berry S, Schneider D, Vermaas WFJ and Rögner M (2002) Electron transport route in whole cells of Synechocystis sp. strain PCC 6803: the route of the cytochrome bd-type oxidase. Biochemistry 41: 3422–3429

    Article  PubMed  CAS  Google Scholar 

  • Blankenship RE (2001) Molecular evidences for evolution of photosynthesis. Trends Plant Sci 6: 4–6

    Article  PubMed  CAS  Google Scholar 

  • Bryant DA, Cohen-Bazire G and Glazer AN (1981) Characterization of the biliproteins of Gloeobacter violaceus. Chromophore content of a cyanobacterial phycoerythrin carrying phycourobilin chromophore. Arch Microbiol 129: 190–198

    Article  CAS  Google Scholar 

  • De Las Rivas J and Barber J (2004) Analysis of the structure of the PsbO protein and its implications. Photosynth Res 81: 329–343

    Article  Google Scholar 

  • Ferreira K, Iverson T, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving canter. Science 303: 1831–1838

    Article  PubMed  CAS  Google Scholar 

  • Frankenberg N, Mukougawa K, Kohchi T and Lagarias JC (2001) Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organisms. Plant Cell 13: 965–978

    PubMed  CAS  Google Scholar 

  • Gantt E (1981) Phycobilisomes. Annu Rev Plant Physiol 32: 327–347

    CAS  Google Scholar 

  • Guglielmi G, Cohen-Bazire G and Bryant DA (1981) The structure of Gloeobacter violaceus and its phycobilisomes. Arch Microbiol 129: 181–189

    Article  CAS  Google Scholar 

  • Güler S, Seeliger A, Härtel H, Renger G and Benning C (1996) A null mutant of Synechococcus sp. PCC7942 deficient in the sulfolipid sulfoquinovosyl diacylglycerol. J Biol Chem 271: 7501–7507

    Article  PubMed  Google Scholar 

  • Guo H and Xu X (2004) Broad host range plasmid-based gene transfer system in the cyanobacterium Gloeobacter violaceus which lacks thylakoids. Prog Natl Sci 14: 31–35

    Google Scholar 

  • Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni M and Saenger W (2009) Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Bio 16: 334–342

    CAS  Google Scholar 

  • Gutiérrez-Cirlos EB, Pérez-Gómez B, Krogmann DW and Gómez-Lojerob C (2006) The phycocyanin-associated rod linker proteins of the phycobilisome of Gloeobacter violaceus PCC 7421 contain unusually located rod-capping domains. Biochim Biophys Acta 1757: 130–134

    Article  PubMed  Google Scholar 

  • Hiratsuka T, Furihata K, Ishikawa J, Yamashita H, Itoh N, Seto H and Dairi T (2008) An alternative menaquinone biosynthetic pathway operating in microorganisms. Science 321: 1670–1673

    Google Scholar 

  • Huynen MA, Dandekar T and Bork P (1999) Variation and evolution of the citric-acid cycle: a genomic perspective. Trends Microbiol 7: 281–291

    Article  PubMed  CAS  Google Scholar 

  • Inoue H, Tsuchiya T, Satoh S, Miyashita H, Kaneko T, Tabata S, Tanaka A and Mimuro M (2004) Unique constitution of photosystem I with a novel subunit in the cyanobacterium Gloeobacter violaceus PCC 7421. FEBS Lett 578: 275–279

    Article  PubMed  CAS  Google Scholar 

  • Kamiya N and Shen J-R (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7 Å resolution. Proc Natl Acad Sci U S A 100: 98–103

    CAS  Google Scholar 

  • Kato Y, Nakamura A, Suzawa T and Watanabe T (2008) In Allen J, Gantt E, Golbeck J and Osmond B (eds) Photosynthesis Energy from the Sun, Springer, New York 109–112

    Google Scholar 

  • Koenig F and Schmidt M (1995) Gloeobacter violaceus-investigation of an unusual photosynthetic apparatus, absence of the long wavelength emission of photosystem I in 77 K fluorescence spectra. Physiol Plant 94: 621–628

    Article  CAS  Google Scholar 

  • Kondo K, Geng XX, Katayama M and Ikeuchi M (2005) Distinct roles of CpcG1 and CpcG2 in phycobilisome assembly in the cyanobacterium Synechocystis sp. PCC 6803. Photosynth Res 84: 269–273

    Article  PubMed  CAS  Google Scholar 

  • Koyama K, Tsuchiya T, Akimoto S, Yokono M, Miyashita H and Mimuro M (2006) New linker proteins in phycobilisomes isolated from the cyanobacterium Gloeobacter violaceus PCC 7421. FEBS Lett 580: 3457–3461

    Article  PubMed  CAS  Google Scholar 

  • Koyama K, Suzuki H, Noguchi T, Akimoto S, Tsuchiya T and Mimuro M (2008) Oxygen evolution activities in the thylakoid-lacking cyanobacterium Gloeobacter violaceus PCC 7421. Biochim Biophys Acta 1777: 369–378

    Article  PubMed  CAS  Google Scholar 

  • Krogmann DW, Pérez-Gómez B, Gutiérrez-Cirlos EB, Chagolla-López A, de la Vara LG and Gómez-Lojero C (2007) The presence of multidomain linkers determines the bundle-shape structure of the phycobilisome of the cyanobacterium Gloeobacter violaceus PCC 7421. Photosynth Res 93: 27–43

    Article  PubMed  CAS  Google Scholar 

  • Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S, Vothknecht UC, Soll J and Westhoff P (2001) VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proc Nat Acad Sci U S A 98: 4238–4242

    Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A and Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosysterm II. Nature 438: 1040–1044

    Article  PubMed  CAS  Google Scholar 

  • McDonald AE and Vanlerberghe GC (2006) Origins, evolutionary history, and taxonomic distribution of alternative oxidase and plastoquinol terminal oxidase. Comparative Biochem Physiol, Part D 1: 357–364

    Google Scholar 

  • Mangels D, Kruip J, Berry S, Rögner M, Boekema EJ and Koenig F (2002) Photosystem I from the unusual cyanobacterium Gloeobacter violaceus. Photosynth Res 72: 307–319

    Article  PubMed  CAS  Google Scholar 

  • Mimuro M, Lipschultz CA and Gantt E (1986) Energy flow in the phycobilisome core of Nostoc sp. (MAC): two independent terminal pigments. Biochim Biophys Acta 852: 126–132

    Article  CAS  Google Scholar 

  • Mimuro M, Ookubo T, Takahashi D, Sakawa T, Akimoto S, Yamazaki I and Miyashita H (2002) Unique fluorescence properties of a cyanobacterium Gloeobacter violaceus PCC 7421: reasons for absence of the long-wavelength PSI Chl a fluorescence at –196°C. Plant Cell Physiol 43: 587–594

    Article  PubMed  CAS  Google Scholar 

  • Mimuro M, Tsuchiya T, Inoue H, Sakuragi Y, Itoh Y, Gotoh T, Miyashita H, Bryant DA and Kobayashi M (2005) The secondary electron acceptor of photosystem I in Gloeobacter violaceus PCC 7421 is menaquinone-4 that is synthesized by a unique but unknown pathway. FEBS Lett 579: 3493–3496

    Article  PubMed  CAS  Google Scholar 

  • Mimuro M, Tomo T and Tsuchiya T (2008a) Two unique cyanobacteria lead to a new view on the appearance of oxygenic photosynthesis. Photosynth Res 97: 167–176

    Article  CAS  Google Scholar 

  • Mimuro M, Kobayashi M, Murakami A, Tsuchiya T and Miyashita H (2008b) Structure and function of antenna systems: oxygen evolving cyanobacteria. In Renger G (ed) Primary Processes of Photosynthesis: Basic Principles and Apparatus, Part 1, pp 261–299. RSC Publishing, Cambridge

    Google Scholar 

  • Miranda MRM, Choi AR, Shi L, Bezerra Jr AG, Jung K-H and Brown LS (2009) The photocycle and proton translocation pathway in a cyanobacterial ion-pumping rhodopsin. Biophys J 96: 1471–1481

    Article  PubMed  CAS  Google Scholar 

  • Mogi T and Miyoshi H (2009) Properties of cytochrome bd plastoquinol oxidase from the cyanobacterium Synechocystis sp. PCC 6803. J Biochem 145: 395–401

    Article  PubMed  CAS  Google Scholar 

  • Motoki A, Usui M, Shimazu T, Hirano M and Katoh S (2002) A domain of the manganese stabilizing protein from Synechococcus elongatus involved in functional binding to photosystem II. J Biol Chem 277: 14747–14756

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Takeuchi C, Yamada M and Tabata S (2003) Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res 10: 137–145

    Article  PubMed  CAS  Google Scholar 

  • Nelissen B, Van de Peer Y, Wilmotte A and De Wachter R (1995) An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Mol Biol Evol 12: 1166–1173

    PubMed  CAS  Google Scholar 

  • Olson JM and Blankenship RE (2004) Thinking about the evolution of photosynthesis. Photosynth Res 80: 373–386

    Article  PubMed  CAS  Google Scholar 

  • Paumann M, Regelsberger G, Obinger C and Peschek GA (2005) The bioenergetic role of dioxygen and the terminal oxidase(s) in cyanobacteria. Biochim Biophys Acta 1707: 231–253

    Article  PubMed  CAS  Google Scholar 

  • Peschek GA (2008) Electron transport chains in oxygenic cyanobacteria. In Renger G (ed) Primary Processes of Photosynthesis: Principles and Applications, pp 383–415. RSC Publishing, Cambridge

    Google Scholar 

  • Rippka R, Waterbury J and Cohen-Bazire G (1974) A cyanobacterium which lacks thylakoids. Arch Microbiol 100: 419–436

    Article  CAS  Google Scholar 

  • Scheer H and Zhao KH (2008) Biliprotein maturation: the chromophore attachment. Mol Microbiol 68: 263–276

    Article  PubMed  CAS  Google Scholar 

  • Selstam E and Campbell D (1996) Membrane lipid composition of the unusual cyanobacterium Gloeobacter violaceus sp. PCC 7421, which lacks sulfoquinovosyl diacylglycerol. Arch Microbiol 166: 132–135

    Article  CAS  Google Scholar 

  • Schmetterer G (1994) Cyanobacterial respiration. The Molecular Biology of Cyanobacteria, pp 409–435. Kluwer Academic, Dordrecht

    Book  Google Scholar 

  • Sicora CI, Brown CM, Cheregi O, Vass I and Campbell DA (2008) The psbA gene family responds differentially to light and UVB stress in Gloeobacter violaceus PCC 7421, a deeply divergent cyanobacterium. Biochim Biophys Acta 1777: 130–139

    Article  PubMed  CAS  Google Scholar 

  • Sobotka R, Dühring U, Komenda J, Peter E, Gardian Z, Tichy M, Grimm B and Wilde A (2008) Importance of the cyanobacterial Gun4 protein for chlorophyll metabolism and assembly of photosynthetic complexes. J Biol Chem 283: 25794–25802

    Article  PubMed  CAS  Google Scholar 

  • Steiger S, Jackisch Y and Sandmann G (2005) Carotenoid biosynthesis in Gloeobacter violaceus PCC4721 involves a single crtI-type phytoene desaturase instead of typical cyanobacterial enzymes. Arch Microbiol 184: 207–214

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya T, Takaichi S, Misawa N, Maoka T, Miyashita H and Mimuro M (2005) The cyanobacterium Gloeobacter violaceus PCC 7421 uses bacterial-type phytoene desaturase in carotenoid biosynthesis. FEBS Lett 579: 2125–2129

    Article  PubMed  CAS  Google Scholar 

  • Westphal S, Heins L, Soll J and Vothknecht UC (2001) Vipp1 deletion mutant of Synechocystis: A connection between bacterial phage shock and thylakoid biogenesis? Proc Nat Acad Sci U S A 98: 4243–4248

    Article  CAS  Google Scholar 

  • Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A and Yachandra VK (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314: 821–825

    Article  PubMed  CAS  Google Scholar 

  • Yano J and Yachandra VK (2008) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster from X-ray spectroscopy. Inorg Chem 47: 1711–1726

    Article  PubMed  CAS  Google Scholar 

  • Yokono M, Akimoto S, Koyama K, Tsuchiya T and Mimuro M (2008) Energy transfer processes in Gloeobacter violaceus PCC 7421 that possesses phycobilisomes with a unique morphology. Biochim Biophys Acta 1777: 55–65

    Article  PubMed  CAS  Google Scholar 

  • Zhang CC, Jeanjean R and Joset F (1998) Obligate phototrophy in cyanobacteria: more than a lack of sugar transport. FEMS Microbio Lett 161: 285–292

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express sincere thanks to Prof. G. A. Peschek, University of Vienna, for his giving us a chance to write this article. This work was supported in part by the Grant-in-Aids for the Creative Research from the Japanese Society for Promotion of Science (JSPS) to MM (Grant No. 17GS0314). We also thank Mr. H. Inoue for his work in the early stage of our experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoru Mimuro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mimuro, M., Tsuchiya, T., Koyama, K., Peschek, G.A. (2011). Bioenergetics in a Primordial Cyanobacterium Gloeobacter violaceus PCC 7421. In: Peschek, G., Obinger, C., Renger, G. (eds) Bioenergetic Processes of Cyanobacteria. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0388-9_9

Download citation

Publish with us

Policies and ethics