Skip to main content

Transient Interactions Between Soluble Electron Transfer Proteins. The Case of Plastocyanin and Cytochrome f

  • Chapter
  • First Online:
Bioenergetic Processes of Cyanobacteria

Abstract

Oxygenic photosynthesis depends absolutely on electron transfer between cytochrome f and plastocyanin (or cytochrome c 6). The reaction must be very fast if it is not to limit the rate of photosynthesis; it also depends on diffusional interaction between the two proteins. This implies that it is highly transient, and involves specific binding in a configuration that allows rapid electron transfer. The specificity must be strictly limited, however, because high specificity would endanger rapid turnover of the electron transport chain and the promiscuous reactions of plastocyanin with photosystem I and cytochrome oxidase. Reaction of cytochrome f with plastocyanin is an outstanding example of weak, transient protein interactions, which include many signalling systems as well as electron transfer. The structural basis of this type of interaction is not well understood because of the difficulty of obtaining crystal structures for transient complexes. This has been overcome with plastocyanin by using NMR techniques that provide information on both structure and dynamics of the complex. Cyanobacteria provide the most complete information currently available. The aim of this chapter is to present our current understanding of the system in terms of the fundamental physical, structural and kinetic factors that must be satisfied to achieve rapid electron transfer. The overriding consideration is how to achieve an appropriately short distance between redox centers; desolvation of the interface is shown to be a critical factor. Transient, semi-specific binding can the be achieved in many ways. Although complementary electrostatic charges accelerate binding, they do not necessarily result in strong binding, and in some cyanobacteria hydrophobic interactions and hydrophobic channelling largely take over from electrostatics. The above considerations, which have been developed by study of the reaction in solution, help to illuminate the behaviour of the system in vivo and the evolutionary pressures which have shaped it. An important feature of the transition from cyanobacteria to eukaryotic oxyphototrophs has been the loss of cytochrome oxidase from plastids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albarrán C, Navarro JA, Molina-Heredia FP, Murdoch PS, De la Rosa MA, Hervás M (2005) Laser flash-induced kinetic analysis of cytochrome f oxidation by wild-type and mutant plastocyanin from the cyanobacterium Nostoc sp. PCC 7119. Biochemistry 44:11601–11607

    PubMed  Google Scholar 

  • Albarrán C, Navarro JA, De la Rosa MA, Hervás M (2007) The specificity in the interaction between cytochrome f and plastocyanin from the cyanobacterium Nostoc sp. PCC 7119 is mainly determined by the copper protein. Biochemisry 46:997–1003

    Google Scholar 

  • Albeck S, Unger R, Schreiber G (2000) Evaluation of direct and cooperative contributions towards the strength of buried hydrogen bonds and salt bridges. J Mol Biol 298:503–520

    PubMed  CAS  Google Scholar 

  • Babu CR, Volkman BF, Bullerjahn GS (1999) NMR solution structure of plastocyanin from the photosynthetic prokaryote, Prochlorothrix hollandica. Biochemistry 38:4988–4995

    PubMed  CAS  Google Scholar 

  • Badsberg U, Jorgensen AMM, Gesmar H, Led JJ, Hammerstad JM, Jespersen L-L, Ulstrup J (1996) Solution structure of reduced plastocyanin from the blue-green alga Anabaena variabilis. Biochemistry 35:7021–7031

    PubMed  CAS  Google Scholar 

  • Bagby S, Driscoll PC, Harvey TS, Hill HAO (1994) High-resolution solution structure of reduced parsley plastocyanin. Biochemistry 33:6611–6622

    PubMed  CAS  Google Scholar 

  • Bendall DS (1996) Interprotein electron transfer. In: Bendall DS (ed) Protein electron transfer. Bios Scientific Publishers, Oxford, pp 43–68

    Google Scholar 

  • Bendall DS, Wood PM (1978) Kinetics of electron transfer through higher-plant plastocyanin. In: Hall DO et al (eds) Proceedings of the fourth international congress on photosynthesis 1977. The Biochemical Society, London, pp 771–775

    Google Scholar 

  • Bergkvist A, Ejdebäck M, Ubbink M, Karlsson BG (2001) Surface interactions in the complex between cytochrome f and the E43/D44N and E59K/E60Q plastocyanin double mutants as determined by 1H-NMR chemical shift analysis. Protein Sci 10:2623–2626

    PubMed  CAS  Google Scholar 

  • Bertini I, Ciurli S, Dikly A, Fernández CO, Luchinat C, Safarov N, Shumilin S, Vila AJ (2001) The first solution structure of a paramagnetic copper(II) protein: the case of oxidized plastocyanin from the cyanobacterium Synechocystis PCC6803. J Am Chem Soc 123:2413

    Google Scholar 

  • Bond CS, Bendall DS, Freeman HC, Guss JM, Howe CJ, Wagner MJ, Wilce MCJ (1999) The structure of plastocyanin form the cyanobacterium Phormidium laminosum. Acta Cryst D55:414–421

    CAS  Google Scholar 

  • Brock K, Talley K, Coley K, Kundrotas P, Alexov E (2007) Optimization of electrostatic interactions in protein-protein complexes. Biophys J 93:3340–3352

    PubMed  CAS  Google Scholar 

  • Camacho CJ, Weng ZP, Vajda S, Delisi C (1999) Free energy landscapes of encounter complexes in protein-protein association. Biophys J 76:1166–1178

    PubMed  CAS  Google Scholar 

  • Camacho CJ, Kimura SR, Delisi C, Vajda S (2000) Kinetics of desolvation-mediated protein-protein binding. Biophys J 78:1094–1105

    PubMed  CAS  Google Scholar 

  • Carrell CJ, Schlarb BG, Bendall DS, Howe CJ, Cramer WA, Smith JL (1999) Structure of the soluble domain of cytochrome f from the cyanobacterium, Phormidium laminosum: convergent evolution of the membrane-bound c-type cytochromes from photosynthetic and respiratory cytochrome bc complexes. Biochemistry 38:9590–9599

    PubMed  CAS  Google Scholar 

  • Chi Y-I, Huang L-S, Zhang Z, Fernández-Velasco JG, Berry EA (2000) X-ray structure of a truncated form of cytochrome f from Chlamydomonas reinhardtii. Biochemistry 39:7689–7701

    PubMed  CAS  Google Scholar 

  • Collyer CA, Guss JM, Sugimura Y, Yoshizaki F, Freeman HC (1990) Crystal structure of plastocyanin from a green alga, Enteromorpha prolifera. J Mol Biol 211:617–632

    PubMed  CAS  Google Scholar 

  • Colman PM, Freeman HC, Guss JM, Murata M, Norris VA, Ramshaw JAM, Venkatappa MP (1978) X-ray crystal structure analysis of plastocyanin at 2.7 A resolution. Nature 272:319–324

    CAS  Google Scholar 

  • Crowley PB, Carrondo MA (2004) The architecture of the binding site in redox protein complexes: implications for fast dissociation. Proteins 55:603–612

    PubMed  CAS  Google Scholar 

  • Crowley PB, Otting G, Schlarb-Ridley BG, Canters GW, Ubbink M (2001) Hydrophobic interactions in a cyanobacterial plastocyanin-cytochrome f complex. J Am Chem Soc 123:10444–10453

    PubMed  CAS  Google Scholar 

  • Crowley PB, Vintonenko N, Bullerjahn GS, Ubbink M (2002) Plastocyanin-cytochrome f interactions: the influence of hydrophobic patch mutations studied by NMR spectroscopy. Biochemistry 41:15698–15705

    PubMed  CAS  Google Scholar 

  • Crowley PB, Hunter DM, Sato K, McFarlane W, Dennison C (2004) The parsley plastocyanin-turnip cytochrome f complex: a structurally distorted but kinetically functional acidic patch. Biochem J 378:45–51

    PubMed  CAS  Google Scholar 

  • De Rienzo F, Gabdoulline RR, Menziani MC, De Benedetti PG, Wade RC (2001) Electrostatic analysis and brownian dynamics simulation of the association of plastocyanin and cytochrome f. Biophys J 81:3090–3104

    PubMed  Google Scholar 

  • Despa F, Berry RS (2007) The origin of long-range attraction between hydrophobes in water. Biophys J 92:373–378

    PubMed  CAS  Google Scholar 

  • DeVault D (1980) Quantum mechanical tunnelling in biological systems. Q Rev Biophys 13:387–564

    PubMed  CAS  Google Scholar 

  • DeVault D (1984) Quantum-mechanical tunnelling in biological systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Di Cera E (1998) Site-specific analysis of mutational effects in proteins. Adv Protein Chem 51:59–119

    PubMed  Google Scholar 

  • Díaz-Moreno I, Díaz-Quintana A, Ubbink M, De la Rosa MA (2005a) An NMR-based docking model for the physiological transient complex between cytochrome f and cytochrome c 6. FEBS Lett 579:2891–2896

    Google Scholar 

  • Díaz-Moreno I, Díaz-Quintana A, De la Rosa MA, Crowley PB, Ubbink M (2005b) Different modes of interaction in cyanobacterial complexes of plastocyanin and cytochrome f. Biochemistry 44:3176–3183

    Google Scholar 

  • Díaz-Moreno I, Díaz-Quintana A, De la Rosa MA, Ubbink M (2005c) Structure of the complex between plastocyanin and cytochrome f from the cyanobacterium Nostoc sp. PCC 7119 as determined by paramagnetic NMR. J Biol Chem 280:18908–18915

    Google Scholar 

  • Dong F, Zhou H-X (2002) Electrostatic contributions to T4 lysozyme stability: solvent-exposed charges versus semi-buried salt bridges. Biophys J 83:1341–1347

    PubMed  CAS  Google Scholar 

  • Dong F, Zhou H-X (2006) Electrostatic contribution to the binding stability of protein-protein complexes. Proteins 65:87–102

    PubMed  CAS  Google Scholar 

  • Durán RV, Hervás M, De la Rosa MA, Navarro JA (2004) The efficient functioning of photosynthesis and respiration in Synechocystis sp. PCC 6803 strictly requires the presence of either cytochrome c 6 or plastocyanin. J Biol Chem 279:7229–7233

    PubMed  Google Scholar 

  • Ejdebäck M, Bergkvist A, Karlsson BG, Ubbink M (2000) Side-chain interactions in the plastocyanin-cytochrome f complex. Biochemistry 39:5022–5027

    PubMed  Google Scholar 

  • Elcock AH, Gabdoulline RR, Wade RC, McCammon JA (1999) Computer simulation of protein-protein association kinetics: acetylcholinesterase-fasciculin. J Mol Biol 291:149–162

    PubMed  CAS  Google Scholar 

  • Ellis RJ (2001a) Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol 11:114–119

    CAS  Google Scholar 

  • Ellis RJ (2001b) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26:597–604

    CAS  Google Scholar 

  • Finazzi G, Sommer F, Hippler M (2005) Release of oxidized plastocyanin from photosystem I limits electron transfer between photosystem I and cytochrome b 6 f complex in vivo. Proc Natl Acad Sci U S A 102:7031–7036

    PubMed  CAS  Google Scholar 

  • Finkelstein AV, Janin J (1989) The price of lost freedom: entropy of bimolecular complex formation. Protein Eng 3:1–3

    PubMed  CAS  Google Scholar 

  • Fraústa da Silva JJR, Williams RJP (1991) The biological chemistry of the elements: the inorganic chemistry of life. Clarendon Press, Oxford

    Google Scholar 

  • Froloff N, Windemuth A, Honig B (1997) On the calculation of binding free energies using continuum methods: application to MHC class I protein-peptide interactions. Protein Sci 6:1293–1301

    PubMed  CAS  Google Scholar 

  • Gilson MK, Sharp KA, Honig B (1987) Calculating the electrostatic potential of molecules in solution: method and error assessment. J Comput Chem 9:327–335

    Google Scholar 

  • Gilson MK, Honig B (1988) Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins 4:7–18

    PubMed  CAS  Google Scholar 

  • Gong X-S, Wen JQ, Fisher NE, Young S, Howe CJ, Bendall DS, Gray JC (2000) The role of individual lysine residues in the basic patch on turnip cytochrome f for electrostatic interactions with plastocyanin in vitro. Eur J Biochem 267:3461–3468

    PubMed  CAS  Google Scholar 

  • Gross EL (2004) A brownian dynamics study of the interaction of Phormidium laminosum plastocyanin with Phormidium laminosum cytochrome f. Biophys J 87:2043–2059

    PubMed  CAS  Google Scholar 

  • Gross EL, Pearson DC (2003) Brownian dynamics simulations of the interaction of Chlamydomonas cytochrome f with plastocyanin and cytochrome c 6. Biophys J 85:2055–2068

    PubMed  CAS  Google Scholar 

  • Haddadian EJ, Gross EL (2006) A brownian dynamics study of the effects of cytochrome f structure and deletion of its small domain in interactions with cytochrome c 6 and plastocyanin in Chlamydomonas reinhardtii. Biophys J 90:566–577

    PubMed  CAS  Google Scholar 

  • Hart SE, Schlarb-Ridley BG, Delon C, Bendall DS, Howe CJ (2003) Role of charges on cytochrome f from the cyanobacterium Phormidium laminosum in its interaction with plastocyanin. Biochemistry 42:4829–4836

    PubMed  CAS  Google Scholar 

  • Hart SE, Schlarb-Ridley BG, Bendall DS, Howe CJ (2005) Terminal oxidases of cyanobacteria. Biochem Soc Trans 33:832–835

    PubMed  CAS  Google Scholar 

  • Howe CJ, Schlarb-Ridley BG, Wastl J, Purton S, Bendall DS (2006) The novel cytochrome c 6 of chloroplasts: a case of evolutionary bricolage? J Exp Bot 57:13–22

    PubMed  CAS  Google Scholar 

  • Hulsker R, Baranova MV, Bullerjahn GS, Ubbink M (2008) Dynamics in the transient complex of plastocyanin-cytochrome f from Prochlorothrix hollandica. J Am Chem Soc 130:1985–1991

    PubMed  CAS  Google Scholar 

  • Inoue T, Sugawara H, Hamanaka S, Tsukui H, Suzuki E, Kohzuma T, Kai Y (1999a) Crystal structure determinations of oxidized and reduced plastocyanin from the cyanobacterium Synechococcus sp PCC 7942. Biochemistry 38:6063–6069

    CAS  Google Scholar 

  • Inoue T, Gotowda M, Sugawara H, Kohzuma T, Yoshizaki F, Sugimura Y, Kai Y (1999b) Structure comparison between oxidized and reduced plastocyanin from a fern, Dryopteris crassirhizoma. Biochemistry 38:13853–13861

    CAS  Google Scholar 

  • Jacob F (1977) Molecular tinkering in evolution. In: Bendall DS (ed) Evolution from Molecules to Men. Cambridge University Press, Cambridge, pp 131–144

    Google Scholar 

  • Jansson H, Ökvist M, Jacobson F, Ejdebäck M, Hansson Ö, Sjölin L (2003) The crystal structure of the spinach plastocyanin double mutant G8D/L12E gives insight into its low reactivity towards photosystem I and cytochrome f. Biochim Biophys Acta 1607:203–210

    PubMed  CAS  Google Scholar 

  • Joliot P, Joliot A, Verméglio A (2005) Fast oxidation of the primary electron acceptor under anaerobic conditions requires the organization of the photosynthetic chain of Rhodobacter sphaeroides in supercomplexes. Biochim Biophys Acta 1706:204–214

    PubMed  CAS  Google Scholar 

  • Jones S, Thornton JM (1996) Principles of protein-protein interactions. Proc Natl Acad Sci U S A 93:13–20

    PubMed  CAS  Google Scholar 

  • Kannt A, Young S, Bendall DS (1996) The role of acidic residues of plastocyanin in its interaction with cytochrome f. Biochim Biophys Acta 1277:115–126

    CAS  Google Scholar 

  • Kerfeld CA, Anwar HP, Interrante R, Merchant S, Yeates TO (1995) The structure of chloroplast cytochrome c 6 at 1.9 Å resolution: evidence for functional oligomerization. J Mol Biol 250:627–647

    PubMed  CAS  Google Scholar 

  • Kieselbach T, Hagman Å, Andersson B, Schröder WP (1998) The thylakoid lumen of chloroplasts—Isolation and characterization. J Biol Chem 273:6710–6716

    PubMed  CAS  Google Scholar 

  • Kohzuma T, Inoue T, Yoshizaki F, Sasakawa Y, Onodera K, Nagatomo S, Kitagawa T, Uzawa S, Isobe Y, Sugimura Y, Gotowda M, Kai Y (1999) The structure and unusual pH dependence of plastocyanin from the fern Dryopteris crassirhizoma. J Biol Chem 274:11817–11823

    PubMed  CAS  Google Scholar 

  • Kramers HA (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7:284–304

    CAS  Google Scholar 

  • Lange C, Cornvik T, Díaz-Moreno I, Ubbink M (2005) The transient complex of poplar plastocyanin with cytochrome f: effects of ionic strength and pH. Biochim Biophys Acta 1707:179–188

    PubMed  CAS  Google Scholar 

  • Laskowski RA (1995) SURFNET: a program for visualizing molecular surfaces, cavities and intermolecular interactions. J Mol Graph 13:323–330

    PubMed  CAS  Google Scholar 

  • Lawrence MC, Colman PM (1993) Shape complementarity at protein/protein interfaces. J Mol Biol 234:946–950

    PubMed  CAS  Google Scholar 

  • Lebbink JHG, Consalvi V, Chiaraluce R, Berndt KD, Ladenstein R (2002) Structural and thermodynamic studies on a salt-bridge triad in the NADP-binding domain of glutamate dehydrogenase from Thermotoga maritima: cooperativity and electrostatic contribution to stability. Biochemistry 41:15524–15535

    PubMed  CAS  Google Scholar 

  • Lee H, Cheng Y-C, Fleming GR (2007) Coherence dynamics in photosynthesis: protein protection of excitonic coherence. Science 316:1462–1465

    PubMed  CAS  Google Scholar 

  • Lin J, Beratan DN (2005) Simulation of electron transfer between cytochrome c 2 and the bacterial photosynthetic reaction center: brownian dynamics analysis of the native proteins and double mutants. J Phys Chem B 109:7529–7534

    PubMed  CAS  Google Scholar 

  • Lin J, Balabin IA, Beratan DN (2005) The nature of aqueous tunneling pathways between electron-transfer proteins. Science 310:1311–1313

    PubMed  CAS  Google Scholar 

  • Lockau W (1979) The inhibition of photosynthetic electron transport in spinach chloroplasts by low osmolarity. Eur J Biochem 94:365–373

    PubMed  CAS  Google Scholar 

  • Maneg O, Malatesta F, Ludwig B, Drosou V (2004) Interaction of cytochrome c with cytochrome oxidase: two different docking scenarios. Biochim Biophys Acta 1655:274–281

    PubMed  CAS  Google Scholar 

  • Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322

    CAS  Google Scholar 

  • Martinez SE, Huang D, Szczepaniak A, Cramer WA and Smith JL (1994) Crystal structure of chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation. Structure 2:95–105

    PubMed  CAS  Google Scholar 

  • Martinez SE, Huang D, Ponomarev M, Cramer WA, Smith JL (1996) The heme redox center of chloroplast cytochrome f is linked to a buried five-water chain. Protein Sci 5:1081–1092

    PubMed  CAS  Google Scholar 

  • Meyer TE, Zhao ZG, Cusanovich MA, Tollin G (1993) Transient kinetics of electron transfer from a variety of c-type cytochromes to plastocyanin. Biochemistry 32:4552–4559

    PubMed  CAS  Google Scholar 

  • Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276:10577–10580

    PubMed  CAS  Google Scholar 

  • Miyashita O, Onuchic JN, Okamura MY (2003) Continuum electrostatic model for the binding of cytochrome c 2 to the photosynthetic reaction center from Rhodobacter sphaeroides. Biochemistry 42:11651–11660

    PubMed  CAS  Google Scholar 

  • Miyashita O, Okamura MY, Onuchic JN (2005) Interprotein electron transfer from cytochrome c 2 to photosynthetic reaction center: tunneling across an aqueous interface. Proc Natl Acad Sci U S A 102:3558–3563

    PubMed  CAS  Google Scholar 

  • Molina-Heredia FP, Hervás M, Navarro JA, De la Rosa MA (2001) A single arginyl residue in plastocyanin and cytochrome c 6 from the cyanobacterium Anabaena sp. PCC 7119 is required for efficient reduction of photosystem I. J Biol Chem 276:601–605

    PubMed  CAS  Google Scholar 

  • Moore JM, Lepre CA, Gippert GP, Chazin WJ, Case DA, Wright PE (1991) High-resolution solution structure of reduced French bean plastocyanin and comparison with the crystal structure of poplar plastocyanin. J Mol Biol 221:533–555

    PubMed  CAS  Google Scholar 

  • Moser CC, Page CC, Farid RS, Dutton PL (1995) Biological electron transfer. J Bioenerg Biomembr 27:263–274

    PubMed  CAS  Google Scholar 

  • Mullineaux CW (1999) The thylakoid membranes of cyanobacteria: structure, dynamics and function. Aus J Plant Physiol 26:671–677

    CAS  Google Scholar 

  • Musiani F, Dikiy A, Semenov AY, Ciurli S (2005) Structure of the intermolecular complex between plastocyanin and cytochrome f from spinach. J Biol Chem 280:18833–18841

    PubMed  CAS  Google Scholar 

  • Navarro JA, Lowe CE, Amons R, Kohzuma T, Canters GW, De la Rosa MA, Ubbink M, Hervás M (2004) Functional characterization of the evolutionarily divergent fern plastocyanin. Eur J Biochem 271:3449–3456

    PubMed  CAS  Google Scholar 

  • Navarro JA, Durán RV, De la Rosa MA, Hervás M (2005) Respiratory cytochrome c oxidase can be efficiently reduced by the photosynthetic redox proteins cytochrome c 6 and plastocyanin in cyanobacteria. FEBS Lett 579:3565–3568

    PubMed  CAS  Google Scholar 

  • Northrup SH, Erickson HP (1992) Kinetics of protein-protein association explained by Brownian dynamics computer simulation. Proc Natl Acad Sci U S A 89:3338–3342

    PubMed  CAS  Google Scholar 

  • Onuchic JN, Beratan DN, Winkler JR, Gray HB (1992) Pathway analysis of protein electron-transfer reactions. Annu Rev Biophys Biomol Struct 21:349–377

    PubMed  CAS  Google Scholar 

  • Page CC, Moser CC, Chen XX, Dutton PL (1999) Natural engineering principles of electron tunnelling in biological oxidation-reduction. Nature 402:47–52

    PubMed  CAS  Google Scholar 

  • Page CC, Moser CC, Dutton PL (2003) Mechanism for electron transfer within and between proteins. Curr Opin Chem Biol 7:551–556

    PubMed  CAS  Google Scholar 

  • Parson WW (2007) Long live electronic coherence! Science 316:1438–1439

    PubMed  CAS  Google Scholar 

  • Paumann M, Regelsberger G, Obinger C and Peschek GA (2005) The bioenergetic role of dioxygen and the terminal oxidase(s) in cyanobacteria. Biochim Biophys Acta 1707:231–253

    PubMed  CAS  Google Scholar 

  • Pearson DC Jr., Gross EL (1998) Brownian dynamics study of the interaction between plastocyanin and cytochrome f. Biophys J 75:2698–2711

    PubMed  CAS  Google Scholar 

  • Pelletier H, Kraut J (1992) Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science 258:1748–1755

    PubMed  CAS  Google Scholar 

  • Polticelli F, Ascenzi P, Bolognesi M, Honig B (1999) Structural determinants of trypsin affinity and specificity for cationic inhibitors. Protein Sci 8:2621–2629

    PubMed  CAS  Google Scholar 

  • Prudêncio M, Ubbink M (2004) Transient complexes of redox proteins: structure and dynamic details from NMR studies. J Mol Recognit 17:524–539

    PubMed  Google Scholar 

  • Qin L, Kostic NM (1993) Importance of protein rearrangement in the electron-transfer reaction between the physiological partners cytochrome f and plastocyanin. Biochemistry 32:6073–6080

    PubMed  CAS  Google Scholar 

  • Redinbo MR, Cascio D, Choukair MK, Rice D, Merchant S, Yeates TO (1993) The 1.5-Å crystal structure of plastocyanin from the green alga Chlamydomonas reinhardtii. Biochemistry 32:10560–10567

    PubMed  CAS  Google Scholar 

  • Romero A, De la Cerda B, Varela PF, Navarro JA, Hervás M, De la Rosa MA (1998) The 2.15 Å crystal structure of a triple mutant plastocyanin from the cyanobacterium Synechocystis sp. PCC 6803. J Mol Biol 275:327–336

    PubMed  CAS  Google Scholar 

  • Schlarb-Ridley BG, Bendall DS, Howe CJ (2002) Role of electrostatics in the interaction between cytochrome f and plastocyanin of the cyanobacterium Phormidium laminosum. Biochemistry 41:3279–3285

    PubMed  CAS  Google Scholar 

  • Schlarb-Ridley BG, Bendall DS, Howe CJ (2003) Relation between interface properties and kinetics of electron transfer in the interaction of cytochrome f and plastocyanin from plants and the cyanobacterium Phormidium laminosum. Biochemistry 42:4057–4063

    PubMed  CAS  Google Scholar 

  • Schlarb-Ridley BG, Mi H, Teale WD, Meyer VS, Howe CJ, Bendall DS (2005) Implications of the effects of viscosity, macromolecular crowding, and temperature for the transient interaction between cytochrome f and plastocyanin from the cyanobacterium Phormidium laminosum. Biochemistry 44:6232–6238

    PubMed  CAS  Google Scholar 

  • Schmidt L, Christensen HEM, Harris P (2006) Structure of plastocyanin from the cyanobacterium Anabaena variabilis. Acta Cryst D Biol Crystallogr 62:1022–1029

    Google Scholar 

  • Selzer T, Albeck S, Schreiber G (2000) Rational design of faster associating and tighter binding protein complexes. Nature Struct Biol 7:537–541

    PubMed  CAS  Google Scholar 

  • Selzer T, Schreiber G (2001) New insights into the mechanism of protein-protein association. Proteins 45:190–198

    PubMed  CAS  Google Scholar 

  • Serrano L, Horovitz A, Avron B, Bycroft M, Fersht AR (1990) Estimating the contribution of engineered surface electrostatic interactions to protein stability by using double-mutant cycles. Biochemistry 29:9343–9352

    PubMed  CAS  Google Scholar 

  • Sharp KA, Honig B (1990) Electrostatic interactions in macromolecules: theory and applications. Annu Rev Biophys Biophys Chem 19:301–332

    PubMed  CAS  Google Scholar 

  • Sheinerman FB, Honig B (2002) On the role of electrostatic interactions in the design of protein-protein interfaces. J Mol Biol 318:161–177

    PubMed  CAS  Google Scholar 

  • Sheinerman FB, Norel R, Honig B (2000) Electrostatic aspects of protein-protein interactions. Curr Opin Struct Biol 10:153–159

    PubMed  CAS  Google Scholar 

  • Shibata N, Inoue T, Nagano C, Nishio N, Kohzuma T, Onodera K, Yoshizaki F, Sugimura Y, Kai Y (1999) The crystal structure of Ulva pertusa plastocyanin at 1.6 Å resolution, structural basis for regulation of the copper site by residue 88. J Biol Chem 274:4225

    PubMed  CAS  Google Scholar 

  • Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 98:1978–1988

    CAS  Google Scholar 

  • Soriano GM, Ponamarev MV, Tae GS, Cramer WA (1996) Effect of the interdomain basic region of cytochrome f on its redox reactions in vivo. Biochemistry 35:14590–14598

    PubMed  CAS  Google Scholar 

  • Soriano GM, Ponamarev MV, Piskorowski RA, Cramer WA (1998) Identification of the basic residues of cytochrome f responsible for electrostatic docking interactions with plastocyanin in vitro: relevance to the electron transfer reaction in vivo. Biochemistry 37:15120–15128

    PubMed  CAS  Google Scholar 

  • Sridharan S, Nicholls A, Honig B (1992) A new vertex algorithm to calculate solvent accessible surface areas. FASEB J 6:A174

    Google Scholar 

  • Teichmann SA (2002) The constraints protein-protein interactions place on sequence divergence. J Mol Biol 324:399–407

    PubMed  CAS  Google Scholar 

  • Tsao Y-H, Evans DF, Wennerström H (1993) Long-range attractive force between hydrophobic surfaces observed by atomic force microscope. Science 262:547–550

    PubMed  CAS  Google Scholar 

  • Ubbink M, Bendall DS (1997) Complex of plastocyanin and cytochrome c characterized by NMR chemical shift analysis. Biochemistry 36:6326–6335

    PubMed  CAS  Google Scholar 

  • Ubbink M, Ejdebäck M, Karlsson BG, Bendall DS (1998) The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics. Structure 6:323–335

    PubMed  CAS  Google Scholar 

  • Vijayakumar M, Zhou H-X (2001) Salt bridges stabilize the folded structure of barnase. J Phys Chem B 105:7334–7340

    CAS  Google Scholar 

  • Volkov AN, Worrall JAR, Holtzmann E, Ubbink M (2006) Solution structure and dynamics of the complex between cytochrome c and cytochrome c peroxidase determined by paramagnetic NMR. Proc Nat Acad Sci U S A 103:18945–18950

    CAS  Google Scholar 

  • Warwicker J, Watson HC (1982) Calculation of the electric potential in the active site cleft due to α-helix dipoles. J Mol Biol 157:671–679

    PubMed  CAS  Google Scholar 

  • Wenner JR, Bloomfield VA (1999) Crowding effects on EcoRV kinetics and binding. Biophys J 77:3234–3241

    PubMed  CAS  Google Scholar 

  • Wheeler KE, Nocek JM, Cull DA, Yatsunyk LA, Rosenzweig AC, Hoffman BM (2007) Dynamic docking of cytochrome b 5 with myoglobin and α-hemoglobin: heme-neutralization “squares” and the binding of electron-transfer-reactive configuration. J Am Chem Soc 129:3906–3917

    PubMed  CAS  Google Scholar 

  • Worrall JAR, Kolczak U, Canters GW, Ubbink M (2001) Interaction of yeast iso-1-cytochrome c with cytochrome c peroxidase investigated by [15N,1H] heteronuclear NMR spectroscopy. Biochemistry 40:7069–7076

    PubMed  CAS  Google Scholar 

  • Worrall JAR, Liu Y, Crowley PB, Nocek JM, Hoffman BM, Ubbink M (2002) Myoglobin and cytochrome b 5: a nuclear magnetic resonance study of a highly dynamic protein complex. Biochemistry 41:11721–11730

    PubMed  CAS  Google Scholar 

  • Worrall JAR, Reinle W, Bernhardt R, Ubbink M (2003) Transient protein interactions studied by NMR spectroscopy: the case of cytochrome c and adrenodoxin. Biochemistry 42:7068–7076

    PubMed  CAS  Google Scholar 

  • Xue YF, Ökvist M, Hansson Ö, Young S (1998) Crystal structure of spinach plastocyanin at 1.7 Å resolution. Protein Sci 7:2099–2105

    PubMed  CAS  Google Scholar 

  • Zhen Y, Hoganson CW, Babcock GT, Ferguson-Miller S (1999) Definition of the interaction domain for cytochrome c on cytochrome c oxidase. I. Biochemical, spectral, and kinetic characterization of surface mutants in subunit II of Rhodobacter sphaeroides cytochrome aa 3. J Biol Chem 274:38032–38041

    PubMed  CAS  Google Scholar 

  • Zhou Y-L, Liao J-M, Chen J, Liang Y (2006) Macromolecular crowding enhances the binding of superoxide dismutase to xanthine oxidase: implications for protein-protein interactions in intracellular environments. Int J Biochem Cell Biol 38:1986–1994

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work from our own laboratory has been supported by the Biotechnology and Biological Sciences Research Council, the Oppenheimer Fund, University of Cambridge, and Corpus Christi College, Cambridge. We are grateful to Barry Honig for making available the program Delphi, to Edward Solomon for providing atomic partial charges for the copper center of plastocyanin and to Peter Crowley for providing the coordinates of the complex between cytochrome f and plastocyanin from Phormidium laminosum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek S. Bendall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bendall, D.S., Schlarb-Ridley, B.G., Howe, C.J. (2011). Transient Interactions Between Soluble Electron Transfer Proteins. The Case of Plastocyanin and Cytochrome f . In: Peschek, G., Obinger, C., Renger, G. (eds) Bioenergetic Processes of Cyanobacteria. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0388-9_19

Download citation

Publish with us

Policies and ethics