Skip to main content

The Water-Soluble Cytochromes of Cyanobacteria

  • Chapter
  • First Online:
Bioenergetic Processes of Cyanobacteria

Abstract

The water-soluble cytochromes of cyanobacteria were first characterized in a biochemical sense in 1963. Three distinct cytochromes—cytochrome c554, cytochrome c552 and cytochrome c550 were named by the location of their absorption peak near the red end of the visible spectrum. These cytochromes were similar in size, heme coenzyme and redox behavior compared to the soluble cytochrome c found in eukaryotic mitochondria and so became cytochrome cs. Cytochrome c554 became cytochrome c6 and was found to transfer electrons to Photosystem I in photosynthesis. This cytochrome is also the donor of electrons to the respiratory cytochrome oxidase in cyanobacteria. The functional roles of cytochrome c552 and c550 are still tentative. Cytochrome c550 is often called low potential cytochrome c550 since its reduction potential is distinctively lower than that of the other two. With the advent of genome sequencing of cyanobacteria, we realized that some organisms have multiple paralogs encoding proteins similar to the water-soluble cytochromes. There are cases where 1, 2, 3 or 4 putative cytochrome c6 genes are recognized in the same cyanobacterium. The presence of different cytochrome c6 analogs in extracts of cells grown in conditions of optimum photosynthesis has not been reported. There follows here a review of the water-soluble cytochromes and their coding sequences that have appeared in cyanobacterial genomes. As of March 2009, 36 complete and 35 incomplete genomes ranging in size from 1.6 to 10 Mbp are available from the National Centre for Biotechnology Information database. It is likely that there will be many more genomes at the time of publication and many more interesting insights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abriata LA, Cassina A, Tórtora V, Marín M, Souza JM, Castro L, Vila AJ and Radi R (2009) Nitration of solvent-exposed tyrosine 74 on cytochrome c triggers heme iron-methionine 80 bond disruption: nuclear magnetic resonance and optical spectroscopy studies. J Biol Chem 284: 17–26

    Article  PubMed  CAS  Google Scholar 

  • Aitken A (1976) Protein evolution in cyanobacteria. Nature 263: 793–796

    Article  PubMed  CAS  Google Scholar 

  • Aitken A (1977) Purification and primary structure of cytochrome f from the cyanobacterium, Plectonema boryanum. Eur J Biochem 78: 273–279

    Article  PubMed  CAS  Google Scholar 

  • Aitken A (1979) Purification and primary structure of cytochrome c-552 from the cyanobacterium, Synechococcus PCC 6312. Eur J Biochem 101: 297–308

    Article  PubMed  CAS  Google Scholar 

  • Bernroitner M, Zamocky M, Pairer M, Furtmüller PG, Peschek GA and Obinger C (2008) Heme-copper oxidases and their electron donors in cyanobacterial respiratory transport. Chem Biodivers 5: 1927–1961

    Article  PubMed  CAS  Google Scholar 

  • Bernroitner M, Tangl D, Lucini C, Furtmüller PG, Peschek GA and Obinger C (2009) Cytochrome cM: probing its role as electron donor for CuA of cyt c oxidase. Biochim Biophys Acta 1787: 135–143

    Article  PubMed  CAS  Google Scholar 

  • Bialek W, Nelson M, Tamiola K, Kallas T and Szczepaniak A (2008) Deeply branching c6-like cytochromes of cyanobacteria. Biochemistry 47: 5515–5522

    Article  PubMed  CAS  Google Scholar 

  • Bovy A, De Vrieze G, Borrias M and Weisbeek P (1992) Transcriptional regulation of the plastocyanin and cytochrome c-553 genes from the cyanobacterium Anabaena species PCC 7937. Mol Microbiol 6: 1507–1513

    Article  PubMed  CAS  Google Scholar 

  • Bushnell GW, Louie GV and Brayer GD (1990) High-resolution three-dimensional structure of horse heart cytochrome c. J Mol Biol 214: 585–595

    Article  PubMed  CAS  Google Scholar 

  • Carmichael WW, Evans WR, Yin QQ, Bell P and Moczydlowski E (1997) Evidence for paralytic shellfish poisons in the freshwater cyanobacterium Lyngbya wollei (Farlow ex Gomont) comb. nov. Appl Environ Microbiol 63: 3104–3110

    PubMed  CAS  Google Scholar 

  • Cho YS, Pakrasi HB and Whitmarsh J (2000) Cytochrome cM from Synechocystis 6803. Detection in cells, expression in Escherichia coli, purification and physical characterization. Eur J Biochem 267: 1068–1074

    Article  PubMed  CAS  Google Scholar 

  • Clark AK and Campbell D (1996) Inactivation of the petE gene for plastocyanin lowers photosynthetic capacity and exacerbates chilling-induced photoinhibition in the cyanobacterium Synechococcus. Plant Physiol 112: 1551–1561

    Article  Google Scholar 

  • Cohen Y, Padan E and Shilo M (1975) Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria liminetica. J Bact 123: 855–861

    PubMed  CAS  Google Scholar 

  • Cohn CL, Sprinkle JR, Alam J, Hermodson M, Meyer T and Krogmann DW (1989) The amino acid sequence of low-potential cytochrome c550 from the cyanobacterium Microcystis aeruginosa. Arch Biochem Biophys 270: 227–235

    Article  PubMed  CAS  Google Scholar 

  • DeLano WL (2002) The PyMOL Molecular Graphics System. California, USA: DeLano Scientific, San Carlos

    Google Scholar 

  • Duran RV, Hervas M, De la Rosa M and Navarro JA (2004) The efficient functioning of photosynthesis and respiration in Synechocystis sp. PCC6803 strictly requires the presence of either cytochrome c6 or plastocyanin. J Biochem 279: 7229–7333

    CAS  Google Scholar 

  • Fier I, Rethmeier J and Fischer U (1999) Molecular properties of soluble cytochrome c-552 and its participation in sulfur metabolism of Oscillatoria strain Bo32. In: Peschek GA, Loeffelhardt W and Schmetterer G (eds) The Phototrophic Prokaryotes, pp 275–280, Kluwer Academic, New York

    Chapter  Google Scholar 

  • Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD and Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31: 3784–3788

    Article  PubMed  CAS  Google Scholar 

  • Ghassemian M, Wong B, Ferreira F, Markley JL and Straus NA (1994) Cloning, sequencing and transcriptional studies of the genes for cytochrome c-553 and plastocyanin from Anabaena sp. PCC 7120. Microbiology 140: 1151–1159

    Article  PubMed  CAS  Google Scholar 

  • Hogansen CW, Lagenfelt G, Andréasson L-E and Vanngard T (1990) EPR spectra of cytochrome c549 of Anacystis nidulans. In: Baltscheffsky H (ed) Current Research in Photosynthesis, Vol 3, pp 319–322, Kluwer Academic, New York

    Google Scholar 

  • Ho KK (2005) Cytochrome c6 genes in cyanobacteria and higher plants. In: Pessarakli M (ed) Handbook of Photosynthesis, 2nd ed, pp 273–284, Marcel Dekker, New York

    Google Scholar 

  • Ho KK and Krogmann DW (1984) Electron donors to P700 in cyanobacteria and algae. An instance of unusual genetic variability. Biochim Biophys Acta 766: 310–316

    Article  CAS  Google Scholar 

  • Holton RW and Myers J (1963) Cytochromes of a blue-green alga: extraction of a c-type cytochrome with a strongly negative redox potential. Science 142: 234–235

    Article  PubMed  CAS  Google Scholar 

  • Holton RW and Myers J (1967a) Water-soluble cytochromes from a blue-green alga. I. Extraction, purification and spectral properties of cytochromes C (549, 552, and 554, Anacystis nidulans). Biochim Biophys Acta 131: 362–374

    Article  CAS  Google Scholar 

  • Holton RW and Myers J (1967b) Water-soluble cytochromes from a blue-gree alga. II. Physicochemical properties and quantitative relationships of cytochromes C (549, 552, and 554 Anacystis nidulans). Biochim Biophys Acta 131: 375–384

    Article  CAS  Google Scholar 

  • Jung YS, Yu L and Golbeck JH (1995) Reconstitution of iron-sulfur center FB results in complete restoration of NADP+ photoreduction in Hg-treated photosystem I complexes from Synechococcus sp. PCC 6301. Photosynth Res 46: 249–255

    Article  CAS  Google Scholar 

  • Katoh H, Itoh S, Shen JR and Ikeuchi M (2001) Functional analysis of psbV and a novel c-type cytochrome gene psbV2 of the thermophilic cyanobacterium Thermosynechococcus elongatus strain BP-1. Plant Cell Physiol 42: 599–607

    Article  PubMed  CAS  Google Scholar 

  • Kerfeld CA, Ho KK and Krogmann DW (1998) The cytochromes c of cyanobacteria. In: Peschek GA, Loeffelhardt W and Schmetterer G (eds) The Phototrophic Prokaryotes, pp 259–268, Plenum Press, New York

    Google Scholar 

  • Kerfeld CA, Sawaya MR, Krogmann DW and Yeates TO (2002) Structure of cytochrome c6 from Arthrospira maxima: an assembly of 24 subunits in a nearly symmetric shell. Acta Crystallogr D58: 1104–1110

    CAS  Google Scholar 

  • Kerfeld CA, Sawaya MR, Bottin H, Tran KT, Suqiura M, Cascio D, Desbois A, Yeates TO Kirilovsky D and Boussac A (2003) Structural and EPR characterization of the soluble form of cytochrome c-550 and of the psbV2 gene product from the cyanobacterium Thermosynechococcus elongatus. Plant Cell Physiol 44: b697–b706

    Article  Google Scholar 

  • Kienzel F and Peschek GA (1983) Cytochrome c-549: an endogenous cofactor of cyclic photophosphorylation in the cyanobacterium Anacystis nidulans. FEBS Lett 162: b76–b80

    Article  Google Scholar 

  • Krogmann DW (1991) The low-potential cytochrome c of cyanobacteria and algae. Biochim Biophys Acta 1058: 35–37

    Article  PubMed  CAS  Google Scholar 

  • Lee I, Salomon AR, Yu KB, Doan JW, Grossman LI and Hutterman M (2006) New prospects for an old enzyme: mammalian cytochrome c is tyrosine-phosphorylated in vivo. Biochemistry 45: 9121–9128

    Article  PubMed  CAS  Google Scholar 

  • Lukat P, Hoffmann M and Einsle O (2008) Crystal packing of the c6-type cytochrome OmcF from Geobacter sulfurreducens is mediated by an N-terminal strep-tag II. Acta Crystallogr D 64: 919–926

    Google Scholar 

  • Malakhov MP, Wada H, Los DA, Sakamoto VE and Murata N (1994) A new type of cytochrome c from Synechocystis PCC 6803. J Plant Physiol 144: 259–264

    Article  CAS  Google Scholar 

  • Malakhov MP, Malakhova OA and Murata N (1999) Balanced regulation of expression of the gene for cytochrome cM and that of genes for plastocyanin and cytochrome c6 in Synechocystis. FEBS Lett 448: 281–284

    Article  Google Scholar 

  • Molina-Heredia FP, Balme A, Hervás M, Navarro JA and De la Rosa MA (2002) A comparative structural and functional analysis of cytochrome cM, cytochrome c6 and plastocyanin from the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 517: 50–54

    Article  PubMed  CAS  Google Scholar 

  • Morand LZ, Cheng RH and Krogmann DW (1994) Soluble electron transfer catalysts of cyanobacteria. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, Vol 1, pp 243–249, Kluwer Academic, Dordrecht

    Google Scholar 

  • Nomura C and Bryant DA (1998) Cytochrome c6 from Synechococcus PCC 7002. In: Peschek GA, Loeffelhardt W and Schmetterer G (eds) The Photorophic Prokaryotes, pp 269–273, Kluwer Academic, New York

    Google Scholar 

  • Obinger C, Knepper JC, Zimmermann U and Peschek GA (1990) Identification of a periplasmic c-type cytochrome as electron donor to the plasma membrane-bound cytochrome oxidase of the cyanobacterium Nostoc Mac. Biochem Biophys Res Commun 169: 492–501

    Article  PubMed  CAS  Google Scholar 

  • Pils D and Schmetterer G (2001) Characterization of three bioenergetically active respiratory terminal oxidases in the cyanobacterium Synechocystis sp. strain PCC 6803. FEMS Microbiol Lett 203: 217–222

    Article  PubMed  CAS  Google Scholar 

  • Pulich W Jr (1977) Cytochrome c548 in Nostoc sp. (Cyanophyceae): an electron acceptor from reduced NADP in the dark. J Phycol 13: 40–45

    CAS  Google Scholar 

  • Sandmann G (1986) Formation of plastocyanin and cytochrome c-553 in different species of blue-green algae. Arch Microbiol 145: 76–79

    Article  CAS  Google Scholar 

  • Sandmann G and Boger P (1980) Copper induced exchange of plastocyanin and cytochrome c553 in cultures of Anabaena variabilis. Plant Sci Lett 17: 417–424

    Article  CAS  Google Scholar 

  • Sandmann GH, Kessler RE and Boger P (1983) Distribution of plastocyanin and soluble plastidic cytochrome c in various classes of algae. Arch Microbiol 134: 23–27

    Article  CAS  Google Scholar 

  • Sawaya MR, Krogmann DW, Serag A, Ho KK, Yeates TO and Kerfeld CA (2001) Structures of cytochrome c-549 and cytochrome c6 from the cyanobacterium Arthrospira maxima. Biochemistry 40: 9215–9225

    Article  PubMed  CAS  Google Scholar 

  • Schwede T, Kopp J, Guex N and Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31: 3381–3385

    Article  PubMed  CAS  Google Scholar 

  • Shuvalov VA, Allakhverdiev SI, Sakamoto A, Malakov M and Murata N (2001) Optical study of cytochrome cM formation in Synechocystis. IUBMB Life 51: 93–97

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG and Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Ulrich EL, Krogmann DW and Markley JL (1982) Structure and heme environment of ferrocytochrome c553 from 1H NMR studies. J Biol Chem 257: 9356–9364

    PubMed  CAS  Google Scholar 

  • Wallace AC, Laskowski RA and Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8: 127–134

    Article  PubMed  CAS  Google Scholar 

  • Weigel M, Varotto C, Pesaresi P, Finazzi G, Rappaport F, Salamini F and Leister D (2003) Plastocyanin is indispensible for photosynthic electron flow in Arabidopsis thaliana. J Biol Chem 278: 31286–31289

    Article  PubMed  CAS  Google Scholar 

  • Wood PM (1978) Interchangeable copper and iron proteins in algal photosynthesis. Studies on plastocyanin and cytochrome c-552 in Chlamydomonas. Eur J Biochem 87: 9–19

    Article  PubMed  CAS  Google Scholar 

  • Worrall JA, Schlarb-Ridley BG, Reda T, Marcaida MJ, Moorlen RJ, Wastl J, Hirst J, Bendall DS, Luisi BF and Howe CJ (2007) Modulation of heme redox potential in the cytochrome c6 family. J Am Chem Soc 129: 9468–9475

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, McSpadden B, Pakrasi HB and Whitmarsh J (1992) Copper-mediated regulation of cytochrome c553 and plastocyanin in the cyanobacterium Synechocystis 6803. J Biol Chem 267: 19054–19059

    PubMed  CAS  Google Scholar 

  • Zhang Z, Pendse ND, Phillips KN, Cotner JB and Khodursky A (2008) Gene expression patterns of sulfur starvation in Synechocystis PCC 6803. BMC Genomics 9: 344

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The work of CAK is performed under the auspices of the US Department of Energy’s Office of Science, Biological and Environmental Research Program, and by the University of California, Lawrence Berkeley National Laboratory under contract number DE-AC02–05CH11231, and Lawrence Livermore National Laboratory under contract number DE-AC52–07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Krogmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ho, K.K., Kerfeld, C.A., Krogmann, D.W. (2011). The Water-Soluble Cytochromes of Cyanobacteria. In: Peschek, G., Obinger, C., Renger, G. (eds) Bioenergetic Processes of Cyanobacteria. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0388-9_18

Download citation

Publish with us

Policies and ethics