Skip to main content

Application of Probiotic Proteomics in Enteric Cytoprotection

  • Chapter
  • First Online:
Probiotic Bacteria and Enteric Infections

Abstract

Mass spectrometry is at centre-of-stage of modern proteomics. This technology has become an indispensable tool in many areas of molecular biology research. However, this modern proteomics has only to a limited extend been applied in the characterization of proteins involved in probiotic effects such as immunomodulation and adhesion to the gastro intestinal tract of the host. Proteins exhibiting these probiotic effects are most often located on the outer cell surface of the probiotic bacterium. Unfortunately, there are few examples on the exploitation of this sub-proteome using proteomics methods in the literature. These studies indicate that probiotic features are caused by the complex interplay of a variety of proteins rather than one single protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antikainen J, Kuparinen V, Lahteenmaki K, Korhonen TK (2007) pH-dependent association of enolase and glyceraldehyde-3-phosphate dehydrogenase of Lactobacillus crispatus with the cell wall and lipoteichoic acids. J Bacteriol 189:4539–4543

    Article  PubMed  CAS  Google Scholar 

  • Bantscheff M, Dumpelfeld B, Kuster B (2004) Femtomol sensitivity post-digest (18)O labeling for relative quantification of differential protein complex composition. Rapid Commun Mass Spectrom 18:869–876

    Article  PubMed  CAS  Google Scholar 

  • Baroja ML, Kirjavainen PV, Hekmat S, Reid G (2007) Anti-inflammatory effects of probiotic yogurt in inflammatory bowel disease patients. Clin Exp Immunol 149:470–479

    Article  CAS  Google Scholar 

  • Bartow RA, Mcmurray DN (1997) Cellular and humoral immune responses to mycobacterial stress proteins in experimental pulmonary tuberculosis. Tuber Lung Dis 78:185–193

    Article  PubMed  CAS  Google Scholar 

  • Bath K, Roos S, Wall T, Jonsson H (2005) The cell surface of Lactobacillus reuteri ATCC 55730 highlighted by identification of 126 extracellular proteins from the genome sequence. FEMS Microbiol Lett 253:75–82

    Article  PubMed  CAS  Google Scholar 

  • Beck HC, Petersen J (2009) A proteomic strategy for the analysis of the outer cell surface proteome of probiotic bacteria. 18th International mass spectrometry conference, Bremen, Germany, 30 Aug–04 Sept. Poster presentation

    Google Scholar 

  • Beck HC, Madsen SM, Glenting J, Petersen J, Israelsen H, Norrelykke MR, Antonsson M, Hansen AM (2009) Proteomic analysis of cell surface-associated proteins from probiotic Lactobacillus plantarum. FEMS Microbiol Lett 297:61–66

    Article  PubMed  CAS  Google Scholar 

  • Bergonzelli GE, Granato D, Pridmore RD, Marvin-Guy LF, Donnicola D, Corthesy-Theulaz IE (2006) GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect Immun 74:425–434

    Article  PubMed  CAS  Google Scholar 

  • Borthakur A, Gill RK, Tyagi S, Koutsouris A, Alrefai WA, Hecht GA, Ramaswamy K, Dudeja PK (2008) The probiotic Lactobacillus acidophilus stimulates chloride/hydroxyl exchange activity in human intestinal epithelial cells. J Nutr 138:1355–1359

    PubMed  CAS  Google Scholar 

  • Boschiroli ML, Foulongne, V, O’callaghan D (2001) Brucellosis: a worldwide zoonosis. Curr Opin Microbiol 4:58–64

    Article  PubMed  CAS  Google Scholar 

  • Brunser O, Gotteland M, Cruchet S (2007) Functional fermented milk products. Nestle Nutr Workshop Ser Pediatr Progr 60:235–247; discussion 247–250

    Article  CAS  Google Scholar 

  • Commane D, Hughes R, Shortt C, Rowland I (2005) The potential mechanisms involved in the anti-carcinogenic action of probiotics. Mutat Res 591:276–289

    Article  PubMed  CAS  Google Scholar 

  • Cordwell SJ, Thingholm TE (2010) Technologies for plasma membrane proteomics. Proteomics 10:611–627

    Article  PubMed  CAS  Google Scholar 

  • Frisk A, Ison CA, Lagergard T (1998) GroEL heat shock protein of Haemophilus ducreyi: association with cell surface and capacity to bind to eukaryotic cells. Infect Immun 66:1252–1257

    PubMed  CAS  Google Scholar 

  • Granato D, Perotti F, Masserey I, Rouvet M, Golliard M, Servin A, Brassart D (1999) Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl Environ Microbiol 65:1071–1077

    PubMed  CAS  Google Scholar 

  • Granato D, Bergonzelli GE, Pridmore RD, Marvin L, Rouvet M, Corthesy-Theulaz IE (2004) Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect Immun 72:2160–2169

    Article  PubMed  CAS  Google Scholar 

  • Herias MV, Hessle C, Telemo E, Midtvedt T, Hanson LA, Wold AE (1999) Immunomodulatory effects of Lactobacillus plantarum colonizing the intestine of gnotobiotic rats. Clin Exp Immunol 116:283–290

    Article  PubMed  CAS  Google Scholar 

  • Heuvelin E, Lebreton C, Grangette C, Pot B, Cerf-Bensussan N, Heyman M (2009) Mechanisms involved in alleviation of intestinal inflammation by Bifidobacterium breve soluble factors. PLoS One 4:e5184

    Article  PubMed  Google Scholar 

  • Hoermannsperger G, Clavel T, Hoffmann M, Reiff C, Kelly D, Loh G, Blaut M, Holzlwimmer G, Laschinger M, Haller D (2009) Post-translational inhibition of IP-10 secretion in IEC by probiotic bacteria: impact on chronic inflammation. PLoS One 4:e4365

    Article  PubMed  Google Scholar 

  • Hsu JL, Huang SY, Chow NH, Chen SH (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75:6843–6852

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo E, Horvatovich P, Marchioni E, Aoude-Werner D, Sanz Y, Ennahar S (2009) 2-DE and MS analysis of key proteins in the adhesion of Lactobacillus plantarum, a first step toward early selection of probiotics based on bacterial biomarkers. Electrophoresis 30:949–956

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita H, Uchida H, Kawai Y, Kawasaki T, Wakahara N, Matsuo H, Watanabe M, Kitazawa H, Ohnuma S, Miura K, Horii A, Saito T (2008) Cell surface Lactobacillus plantarum LA 318 glyceraldehyde-3-phosphate dehydrogenase (GAPDH) adheres to human colonic mucin. J Appl Microbiol 104:1667–1674

    Article  PubMed  CAS  Google Scholar 

  • Kocher T, Superti-Furga G (2007) Mass spectrometry-based functional proteomics: from molecular machines to protein networks. Nat Methods 4:807–815

    Article  PubMed  Google Scholar 

  • Larkin TA, Astheimer LB, Price WE (2009) Dietary combination of soy with a probiotic or prebiotic food significantly reduces total and LDL cholesterol in mildly hypercholesterolaemic subjects. Eur J Clin Nutr 63:238–245

    Article  PubMed  CAS  Google Scholar 

  • Lehto EM, Salminen SJ (1997) Inhibition of Salmonella typhimurium adhesion to Caco-2 cell cultures by Lactobacillus strain GG spent culture supernate: only a pH effect? FEMS Immunol Med Microbiol 18:125–132

    Article  PubMed  CAS  Google Scholar 

  • Madsen SM, Glenting J, Vrang A, Ravn P, Riemann HK, Israelsen H, Norrelykke MR, Hansen AM, Antonsson M, Ahrne S, Beck HC (2005) Cell surface-associated glycolytic enzymes from Lactobacillus plantarum 299v mediate adhesion to human epithelial cells and extracellular matrix proteins. J Biotech 118:S142–S142

    Google Scholar 

  • Mangell P, Lennernas P, Wang M, Olsson C, Ahrne S, Molin G, Thorlacius H, Jeppsson B (2006) Adhesive capability of Lactobacillus plantarum 299v is important for preventing bacterial translocation in endotoxemic rats. Apmis 114:611–618

    Article  PubMed  Google Scholar 

  • Naruszewicz M, Johansson ML, Zapolska-Downar D, Bukowska H (2002) Effect of Lactobacillus plantarum 299v on cardiovascular disease risk factors in smokers. Am J Clin Nutr 76:1249–1255

    PubMed  CAS  Google Scholar 

  • Navarre WW, Schneewind O (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63:174–229

    PubMed  CAS  Google Scholar 

  • Oelschlaeger TA (2010) Mechanisms of probiotic actions—a review. Int J Med Microbiol 300(1):57–62

    Article  PubMed  CAS  Google Scholar 

  • Olsen JV, Schwartz JC, Griep-Raming J, Nielsen ML, Damoc E, Denisov E, Lange O, Remes P, Taylor D, Splendore M, Wouters ER, Senko M, Makarov A, Mann M, Horning S (2009) A dual pressure linear ion trap Orbitrap instrument with very high sequencing speed. Mol Cell Proteomics 8:2759–2769

    Article  PubMed  CAS  Google Scholar 

  • Petrof EO, Claud EC, Sun J, Abramova T, Guo Y, Waypa TS, He SM, Nakagawa Y, Chang EB (2009) Bacteria-free solution derived from Lactobacillus plantarum inhibits multiple NF-kappaB pathways and inhibits proteasome function. Inflamm Bowel Dis 15:1537–1547

    Article  PubMed  Google Scholar 

  • Prescott SL, Bjorksten B (2007) Probiotics for the prevention or treatment of allergic diseases. J Allergy Clin Immunol 120:255–262

    Article  PubMed  CAS  Google Scholar 

  • Rojas M, Ascencio F, Conway PL (2002) Purification and characterization of a surface protein from Lactobacillus fermentum 104R that binds to porcine small intestinal mucus and gastric mucin. Appl Environ Microbiol 68:2330–2336

    Article  PubMed  CAS  Google Scholar 

  • Roos S, Jonsson H (2002) A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology 148:433–442

    PubMed  CAS  Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169

    Article  PubMed  CAS  Google Scholar 

  • Schultz M, Veltkamp C, Dieleman LA, Grenther WB, Wyrick PB, Tonkonogy SL, Sartor RB (2002) Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice. Inflamm Bowel Dis 8:71–80

    Article  PubMed  Google Scholar 

  • Servin AL, Coconnier M.-H. (2003) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clinl Gastroenterol 17:741–754

    Article  CAS  Google Scholar 

  • Spehlmann ME, Eckmann L (2009) Nuclear factor-kappa B in intestinal protection and destruction. Curr Opin Gastroenterol 25:92–99

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe IC, Harrington DJ (2002) Pattern searches for the identification of putative lipoprotein genes in Gram-positive bacterial genomes. Microbiology 148:2065–2077

    PubMed  CAS  Google Scholar 

  • Thingholm TE, Jensen ON, Larsen MR (2009) Analytical strategies for phosphoproteomics. Proteomics 9:1451–1468

    Article  PubMed  CAS  Google Scholar 

  • Vanderpool C, Yan F, Polk DB (2008) Mechanisms of probiotic action: implications for therapeutic applications in inflammatory bowel diseases. Inflamm Bowel Dis 14:1585–1596

    Article  PubMed  Google Scholar 

  • Yan F, Polk DB (2010) Probiotics: progress toward novel therapies for intestinal diseases. Curr Opin Gastroenterol 26:95–101

    Article  PubMed  Google Scholar 

  • Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB (2007) Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132:562–575

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Christian Beck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Beck, H.C., Feddersen, S., Petersen, J. (2011). Application of Probiotic Proteomics in Enteric Cytoprotection. In: Malago, J., Koninkx, J., Marinsek-Logar, R. (eds) Probiotic Bacteria and Enteric Infections. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0386-5_7

Download citation

Publish with us

Policies and ethics