Skip to main content

Application of Molecular Biology and Genomics of Probiotics for Enteric Cytoprotection

  • Chapter
  • First Online:
Probiotic Bacteria and Enteric Infections

Abstract

The exact mechanisms by which probiotics confer their benefits on human health are at present only partly understood. Different modern molecular biology based technologies including comparative genomics and functional genomic analysis have been employed to unravel the mechanisms underlying the functionality of probiotics. In this context, different genes and molecules have been identified to be involved in the interactions between probiotics and the human host as well as with enteropathogens. The genes and molecules crucial for probiotic functionality are involved in survival and adaptation of probiotics to the gut niche including tolerance to the harsh conditions of the gastrointestinal tract and nutritional adaptation. The probiotics interact with enteropathogens, gut microbial symbionts and the human host by different mechanisms. Their interactions with enteropathogens and gut microbial symbionts are mediated through nutrient-based competition and synergies, competitive exclusion and production of antimicrobial compounds. Conversely, the interactions with the human host including metabolic interactions are primarily mediated through modulation of mucosal barrier functions and modulation of the innate and adaptive immune system. During recent years, our understanding of these interactions has been expanded and the present chapter discusses recent findings unravelling the functional genes and molecules of probiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL, McAuliffe O, Souther N, Dobson A, Duong T, Callanan M, Lick S, Hamrick A, Cano R, Klaenhammer TR (2005) Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A 102(11):3906–3912

    PubMed  CAS  Google Scholar 

  • Anderson JM, VanItallie CM (1995) Tight junctions and the molecular-basis for regulation of paracellular permeability. Am J Physiol-Gastrointest Liver Physiol 32(4):G467–G475

    Google Scholar 

  • Ã…vall-Jääskeläinen S, Palva A (2005) Lactobacillus surface layers and their applications. FEMS Microbiol Rev 29(3):511–529

    PubMed  Google Scholar 

  • Azcarate-Peril MA, Altermann E, Hoover-Fitzula RL, Cano RJ, Klaenhammer TR (2004) Identification and inactivation of genetic loci involved with Lactobacillus acidophilus acid tolerance. Appl Environ Microbiol 70(9):5315–5322

    PubMed  CAS  Google Scholar 

  • Azcarate-Peril MA, McAuliffe O, Altermann E, Lick S, Russell WM, Klaenhammer TR (2005) Microarray analysis of a two-component regulatory system involved in acid resistance and proteolytic activity in Lactobacillus acidophilus. Appl Environ Microbiol 71(10):5794–5804

    PubMed  CAS  Google Scholar 

  • Barrangou R, Altermann E, Hutkins R, Cano R, Klaenhammer TR (2003) Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proc Natl Acad Sci U S A 100(15):8957–8962

    PubMed  CAS  Google Scholar 

  • Boekhorst J, Wels M, Kleerebezem M, Siezen RJ (2006) The predicted secretome of Lactobacillus plantarum WCFS1 sheds light on interactions with its environment. Microbiology 152:3175–3183

    PubMed  CAS  Google Scholar 

  • Brandão RL, Castro IM, Bambirra EA, Amaral SC, Fietto LG, Tropia MJ, Neves MJ, Dos Santos RG, Gomes NC, Nicoli JR (1998) Intracellular signal triggered by cholera toxin in Saccharomyces boulardii and Saccharomyces cerevisiae. Appl Environ Microbiol 64(2):564–568

    PubMed  Google Scholar 

  • Bron PA, Grangette C, Mercenier A, de Vos WM, Kleerebezem M (2004) Identification of Lactobacillus plantarum genes that are induced in the gastrointestinal tract of mice. J Bacteriol 186(17):5721–5729

    PubMed  CAS  Google Scholar 

  • Bron PA, Molenaar D, Vos WM, Kleerebezem M (2006) DNA micro-array-based identification of bile-responsive genes in Lactobacillus plantarum. J Appl Microbiol 100(4):728–738

    PubMed  CAS  Google Scholar 

  • Buck BL, Altermann E, Svingerud T, Klaenhammer TR (2005) Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71(12):8344–8351

    PubMed  CAS  Google Scholar 

  • Buts JP, Dekeyser N, Stilmant C, Delem E, Smets F, Sokal E (2006) Saccharomyces boulardii produces in rat small intestine a novel protein phosphatase that inhibits Escherichia coli endotoxin by dephosphorylation. Pediatr Res 60(1):24–29

    PubMed  CAS  Google Scholar 

  • Callanan M, Kaleta P, O’Callaghan J, O’Sullivan O, Jordan K, McAuliffe O, Sangrador-Vegas A, Slattery L, Fitzgerald GF, Beresford T, Ross RP (2008) Genome sequence of lactobacillus helveticus, an organism distinguished by selective gene loss and insertion sequence element expansion. J Bacteriol 190(2):727–735

    PubMed  CAS  Google Scholar 

  • Castagliuolo I, LaMont JT, Nikulasson ST, Pothoulakis C (1996) Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum. Infect Immun 64(12):5225–5232

    PubMed  CAS  Google Scholar 

  • Castagliuolo I, Riegler MF, Valenick L, LaMont JT, Pothoulakis C (1999) Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa. Infect Immun 67(1):302–307

    PubMed  CAS  Google Scholar 

  • Chen X, Kokkotou EG, Mustafa N, Bhaskar KR, Sougioultzis S, O’Brien M, Pothoulakis C, Kelly CP (2006) Saccharomyces boulardii inhibits ERK1/2 mitogen-activated protein kinase activation both in vitro and in vivo and protects against Clostridium difficile toxin A-induced enteritis. J Biol Chem 281(34):24449–24454

    PubMed  CAS  Google Scholar 

  • Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CGM (2007) Bacteriocin production as a mechanism for the antfinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci U S A 104(18):7617–7621

    PubMed  CAS  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3(10):777–788

    PubMed  CAS  Google Scholar 

  • Czerucka D, Rampal P (1999) Effect of Saccharomyces boulardii on cAMP- and Ca2+ -dependent Cl- secretion in T84 cells. Dig Dis Sci 44(11):2359–2368

    PubMed  CAS  Google Scholar 

  • Czerucka D, Roux I, Rampal P (1994) Saccharomyces boulardii inhibits secretagogue-mediated adenosine 3′,5′-cyclic monophosphate induction in intestinal cells. Gastroenterology 106(1):65–72

    PubMed  CAS  Google Scholar 

  • De Keersmaecker SCJ, Verhoeven TLA, Desair J, Marchal K, Vanderleyden J, Nagy I (2006) Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS Microbiol Lett 259(1):89–96

    PubMed  CAS  Google Scholar 

  • Denou E, Berger B, Barretto C, Panoff JM, Arigoni F, Brussow H (2007) Gene expression of commensal Lactobacillus johnsonii strain NCC533 during in vitro growth and in the murine gut. J Bacteriol 189(22):8109–8119

    PubMed  CAS  Google Scholar 

  • Denou E, Pridmore RD, Berger B, Panoff JM, Arigoni F, Brussow H (2008) Identification of genes associated with the long-gut-persistence phenotype of the probiotic Lactobacillus johnsonii strain NCC533 using a combination of genomics and transcriptome analysis. J Bacteriol 190(9):3161–3168

    PubMed  CAS  Google Scholar 

  • Duncan SH, Louis P, Flint HJ (2004) Lactate-utilizing bacteria, isolated from human faeces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70(10):5810–5817

    PubMed  CAS  Google Scholar 

  • Elkins CA, Moser SA, Savage DC (2001) Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100-100 and other Lactobacillus species. Microbiology 147:3403–3412

    PubMed  CAS  Google Scholar 

  • Ewaschuk JB, Diaz H, Meddings L, Diederichs B, Dmytrash A, Backer J, Langen MLV, Madsen KL (2008) Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol-Gastrointest Liver Physiol 295(5):G1025–G1034

    PubMed  CAS  Google Scholar 

  • Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112(9):1291–1299

    PubMed  CAS  Google Scholar 

  • Ferreira A, O’Byrne CP, Boor KJ (2001) Role of sigma(B) in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in Listeria monocytogenes. Appl Environ Microbiol 67(10):4454–4457

    PubMed  CAS  Google Scholar 

  • Ferreira A, Sue D, O’Byrne CP, Boor KJ (2003) Role of Listeria monocytogenes sigma(B) in survival of lethal acidic conditions and in the acquired acid tolerance response. Appl Environ Microbiol 69(5):2692–2698

    PubMed  CAS  Google Scholar 

  • Frees D, Vogensen FK, Ingmer H (2003) Identification of proteins induced at low pH in Lactococcus lactis. Int J Food Microbiol 87(3):293–300

    PubMed  CAS  Google Scholar 

  • Fujiwara S, Hashiba H, Hirota T, Forstner JF (1997) Proteinaceous factor(s) in culture supernatant fluids of bifidobacteria which prevents the binding of enterotoxigenic Escherichia coli to gangliotetraosylceramide. Appl Environ Microbiol 63(2):506–512

    PubMed  CAS  Google Scholar 

  • Gedek BR (1999) Adherence of Escherichia coli serogroup 0 157 and the Salmonella Typhimurium mutant DT 104 to the surface of Saccharomyces boulardii. Mycoses 42(4):261–264

    PubMed  CAS  Google Scholar 

  • Gonzalez R, Klaassens ES, Malinen E, de Vos WM, Vaughan EE (2008) Differential transcriptional response of Bifidobacterium longum to human milk, formula milk, and galactooligosaccharide. Appl Environ Microbiol 74(15):4686–4694

    PubMed  CAS  Google Scholar 

  • Grangette C, Nutten S, Palumbo E, Morath S, Hermann C, Dewulf J, Pot B, Hartung T, Hols P, Mercenier A (2005) Enhanced anti inflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc Natl Acad Sci U S A 102(29):10321–10326

    PubMed  CAS  Google Scholar 

  • Gross G, van der Meulen J, Snel J, van der Meer R, Kleerebezem M, Niewold TA, Hulst MM, Smits MA (2008) Mannose-specific interaction of Lactobacillus plantarum with porcine jejunal epithelium. FEMS Immunol Med Microbiol 54(2):215–223

    PubMed  CAS  Google Scholar 

  • Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361(9356):512–519

    PubMed  Google Scholar 

  • Gueimonde M, Garrigues C, van Sinderen D, de los Reyes-Gavilan CG, Margolles A (2009) Bile-inducible efflux transporter from Bifidobacterium longum NCC(2705) conferring bile resistance. Appl Environ Microbiol 75(10):3153–3160

    PubMed  CAS  Google Scholar 

  • Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Thera 27(2):104–119

    CAS  Google Scholar 

  • Hart AL, Lammers K, Brigidi P, Vitali B, Rizzello F, Gionchetti P, Campieri M, Kamm MA, Knight SC, Stagg AJ (2004) Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut 53(11):1602–1609

    PubMed  CAS  Google Scholar 

  • He F, Morita H, Ouwehand AC, Hosoda M, Hiramatsu M, Kurisaki J, Isolauri E, Benno Y, Salminen S (2002) Stimulation of the secretion of pro-inflammatory cytokines by Bifidobacterium strains. Microbiol Immunol 46(11):781–785

    PubMed  CAS  Google Scholar 

  • Inagaki T, Moschetta A, Lee YK, Peng L, Zhao GX, Downes M, Yu RT, Shelton JM, Richardson JA, Repa JJ, Mangelsdorf DJ, Kliewer SA (2006) Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A 103(10):3920–3925

    PubMed  CAS  Google Scholar 

  • Ivanov D, Emonet C, Foata F, Affolter M, Delley M, Fisseha M, Blum-Sperisen S, Kochhar S, Arigoni F (2006) A serpin from the gut bacterium Bifidobacterium longum inhibits eukaryotic elastase-like serine proteases. J Biol Chem 281(25):17246–17252

    PubMed  CAS  Google Scholar 

  • Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund S, Hendrickx APA, Lebeer S, De Keersmaecker SCJ, Vanderleyden J, Hamalainen T, Laukkanen S, Salovuori N, Ritari J, Alatalo E, Korpela R, Mattila-Sandholm T, Lassig A, Hatakka K, Kinnunen KT, Karjalainen H, Saxelin M, Laakso K, Surakka A, Palva A, Salusjarvi T, Auvinen P, de Vos WM (2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. Proc Natl Acad Sci U S A 106(40):17193–17198

    PubMed  CAS  Google Scholar 

  • Kim GB, Lee BH (2008) Genetic analysis of a bile salt hydrolase in Bifidobacterium animalis subsp lactis KL612. J Appl Microbiol 105(3):778–790

    PubMed  CAS  Google Scholar 

  • Kim GB, Miyamoto CM, Meighen EA, Lee BH (2004) Cloning and characterization of the bile salt hydrolase genes (bsh) from Bifidobacterium bifidum strains. Appl Environ Microbiol 70(9):5603–5612

    PubMed  CAS  Google Scholar 

  • Kim GB, Brochet M, Lee BH (2005) Cloning and characterization of a bile salt hydrolase (bsh) from Bifidobacterium adolescentis. Biotechnol Lett 27(12):817–822

    PubMed  CAS  Google Scholar 

  • Klaassens ES, Boesten RJ, Haarman M, Knol J, Schuren FH, Vaughan EE, de Vos WM (2009) Mixed-species genomic microarray analysis of faecal samples reveals differential transcriptional responses of Bifidobacteria in breast- and formula-fed infants. Appl Environ Microbiol 75(9):2668–2676

    PubMed  CAS  Google Scholar 

  • Klaenhammer T, Altermann E, Arigoni F, Bolotin A, Breidt F, Broadbent J, Cano R, Chaillou S, Deutscher J, Gasson M, van de GM, Guzzo J, Hartke A, Hawkins T, Hols P, Hutkins R, Kleerebezem M, Kok J, Kuipers O, Lubbers M, Maguin E, McKay L, Mills D, Nauta A, Overbeek R, Pel H, Pridmore D, Saier M, van SD, Sorokin A, Steele J, O’Sullivan D, de VW, Weimer B, Zagorec M, Siezen R (2002) Discovering lactic acid bacteria by genomics. Antonie Van Leeuwenhoek 82(1–4):29–58

    PubMed  CAS  Google Scholar 

  • Klingberg TD, Pedersen MH, Cencic A, Budde BB (2005) Application of measurements of transepithelial electrical resistance of intestinal epithelial cell monolayers to evaluate probiotic activity. Appl Environ Microbiol 71(11):7528–7530

    PubMed  CAS  Google Scholar 

  • Konstantinov SR, Smidt H, de Vos WM, Bruijns SCM, Singh SK, Valence F, Molle D, Lortal S, Altermann E, Klaenhammer TR, van Kooyk Y (2008) S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci U S A 105(49):19474–19479

    PubMed  CAS  Google Scholar 

  • Kot E, Bezkorovainy A (1993) Effects of Mg2+ and Ca2+ on Fe2+ uptake by Bifidobacterium thermophilum. Int J Biochem 25(7):1029–1033

    PubMed  CAS  Google Scholar 

  • Kullen MJ, Klaenhammer TR (1999) Identification of the pH-inducible, proton-translocating F1F0-ATPase (atpBEFHAGDC) operon of Lactobacillus acidophilus by differential display: gene structure, cloning and characterization. Mol Microbiol 33(6):1152–1161

    PubMed  CAS  Google Scholar 

  • Lambert JM, Bongers RS, de Vos WM, Kleerebezem M (2008a) Functional analysis of four bile salt hydrolase and penicillin acylase family members in Lactobacillus plantarum WCFS1. Appl Environ Microbiol 74(15):4719–4726

    CAS  Google Scholar 

  • Lambert JM, Siezen RJ, de Vos WM, Kleerebezem M (2008b) Improved annotation of conjugated bile acid hydrolase superfamily members in Gram-positive bacteria. Microbiology 154:2492–2500

    CAS  Google Scholar 

  • Larsen N, Vogensen FK, van den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, bu Al-Soud W, Sorensen SJ, Hansen LH, Jakobsen M (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. Plos One 5(2):e9085

    PubMed  Google Scholar 

  • Lim EM, Ehrlich SD, Maguin E (2000) Identification of stress-inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. Electrophoresis 21(12):2557–2561

    PubMed  CAS  Google Scholar 

  • Lomax AR, Calder PC (2009) Probiotics, immune function, infection and inflammation: a review of the evidence from studies conducted in humans. Curr Pharm Des 15(13):1428–1518

    PubMed  CAS  Google Scholar 

  • Lorca GL, De Valdez GF, Ljungh A (2002) Characterization of the protein-synthesis dependent adaptive acid tolerance response in Lactobacillus acidophilus. J Mol Microbiol Biotechnol 4(6):525–532

    PubMed  CAS  Google Scholar 

  • Mack DR, Ahrne S, Hyde L, Wei S, Hollingsworth MA (2003) Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut 52(6):827–833

    PubMed  CAS  Google Scholar 

  • Mahan MJ, Heithoff DM, Sinsheimer RL, Low DA (2000) Assessment of bacterial pathogenesis by analysis of gene expression in the host. Ann Rev Genet 34:139–164

    PubMed  CAS  Google Scholar 

  • Marco ML, Bongers RS, de Vos WM, Kleerebezem M (2007) Spatial and temporal expression of Lactobacillus plantarum genes in the gastrointestinal tracts of mice. Appl Environ Microbiol 73(1):124–132

    PubMed  CAS  Google Scholar 

  • Marco ML, Peters THF, Bongers RS, Molenaar D, van Hemert S, Sonnenburg JL, Gordon JI, Kleerebezem M (2009) Lifestyle of Lactobacillus plantarum in the mouse caecum. Environ Microbiol 11(10):2747–2757

    PubMed  CAS  Google Scholar 

  • McAuliffe O, Cano RJ, Klaenhammer TR (2005) Genetic analysis of two bile salt hydrolase activities in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71(8):4925–4929

    PubMed  CAS  Google Scholar 

  • Morath S, Geyer A, Hartung T (2001) Structure-function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus. J Exp Med 193(3):393–397

    PubMed  CAS  Google Scholar 

  • Moslehi-Jenabian S, Gori K, Jespersen L (2009) AI-2 signalling is induced by acidic shock in probiotic strains of Lactobacillus spp. Int J Food Microbiol 135(3):295–302

    PubMed  CAS  Google Scholar 

  • Moslehi-Jenabian S, Lindegaard L, Jespersen L (2010) Beneficial effects of probiotic and food borne yeasts on human health. Nutrients 2(4):449–473

    PubMed  CAS  Google Scholar 

  • Mukai T, Toba T, Ohori H (1997) Collagen binding of Bifidobacterium adolescentis. Curr Microbiol 34(5):326–331

    PubMed  CAS  Google Scholar 

  • Oozeer R, Furet JP, Goupil-Feuillerat N, Anba J, Mengaud J, Corthier G (2005) Differential activities of four Lactobacillus casei promoters during bacterial transit through the gastrointestinal tracts of human-microbiota-associated mice. Appl Environ Microbiol 71(3):1356–1363

    PubMed  CAS  Google Scholar 

  • Petrof EO, Kojima K, Ropeleski MJ, Musch MW, Tao Y, De Simone C, Chang EB (2004) Probiotics inhibit nuclear factor-kappa B and induce heat shock proteins in colonic epithelial cells through proteasome inhibition. Gastroenterology 127(5):1474–1487

    PubMed  CAS  Google Scholar 

  • Pfeiler EA, Klaenhammer TR (2007) The genomics of lactic acid bacteria. Trends Microbiol 15(12):546–553

    PubMed  CAS  Google Scholar 

  • Pothoulakis C, Kelly CP, Joshi MA, Gao N, O’Keane CJ, Castagliuolo I, LaMont JT (1993) Saccharomyces boulardii inhibits Clostridium difficile toxin A binding and enterotoxicity in rat ileum. Gastroenterology 104(4):1108–1115

    PubMed  CAS  Google Scholar 

  • Pretzer G, Snel J, Molenaar D, Wiersma A, Bron PA, Lambert J, de Vos WM, van der Meer R, Smits MA, Kleerebezem M (2005) Biodiversity-based identification and functional characterization of the mannose-specific adhesin of Lactobacillus plantarum. J Bacteriol 187(17):6128–6136

    PubMed  CAS  Google Scholar 

  • Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet AC, Zwahlen MC, Rouvet M, Altermann E, Barrangou R, Mollet B, Mercenier A, Klaenhammer T, Arigoni F, Schell MA (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A 101(8):2512–2517

    PubMed  CAS  Google Scholar 

  • Pridmore RD, Pittet AC, Praplan F, Cavadini C (2008) Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti-Salmonella activity. FEMS Microbiol Lett 283(2):210–215

    PubMed  CAS  Google Scholar 

  • Rook GAW, Brunet LR (2005) Microbes, immunoregulation, and the gut. Gut 54(3):317–320

    PubMed  CAS  Google Scholar 

  • Ryan SM, Fitzgerald GF, van Sinderen D (2005) Transcriptional regulation and characterization of a novel beta-fructofuranosidase-encoding gene from Bifidobacterium breve UCC2003. Appl Environ Microbiol 71(7):3475–3482

    PubMed  CAS  Google Scholar 

  • Sanchez B, Reyes-Gavilan CGD, Margolles A (2006) The F1F0-ATPase of Bifidobacterium animalis is involved in bile tolerance. Environ Microbiol 8(10):1825–1833

    PubMed  CAS  Google Scholar 

  • Saulnier DAA, Molenaar D, de Vos WA, Gibson GR, Kolida S (2007) Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays. Appl Environ Microbiol 73(6):1753–1765

    PubMed  CAS  Google Scholar 

  • Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen MC, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A 99(22):14422–14427

    PubMed  CAS  Google Scholar 

  • Seth A, Yan F, Polk DB, Rao RK (2008) Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 294(4):G1060–G1069

    PubMed  CAS  Google Scholar 

  • Shuhaimi M, Ali AM, Saleh NM, Yazid AM (2001) Cloning and sequence analysis of bile salt hydrolase (bsh) gene from Bifidobacterium longum. Biotechnol Lett 23(21):1775–1780

    CAS  Google Scholar 

  • Smits HH, Engering A, van der Kleij D, de Jong EC, Schipper K, van Capel TMM, Zaat BAJ, Yazdanbakhsh M, Wierenga EA, van Kooyk Y, Kapsenberg ML (2005) Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J Allergy Clin Immunol 115(6):1260–1267

    PubMed  CAS  Google Scholar 

  • Sonnenburg JL, Chen CTL, Gordon JI (2006) Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. Plos Biol 4(12):2213–2226

    CAS  Google Scholar 

  • Sougioultzis S, Simeonidis S, Bhaskar KR, Chen XH, Anton PM, Keates S, Pothoulakis C, Kelly CP (2006) Saccharonzyces boulardii produces a soluble anti-inflammatory factor that inhibits NF-kappa B-mediated IL-8 gene expression. Biochem Biophys Res Commun 343(1):69–76

    PubMed  CAS  Google Scholar 

  • Tao Y, Drabik KA, Waypa TS, Musch MW, Alverdy JC, Schneewind O, Chang EB, Petrof EO (2006) Soluble factors from Lactobacillus GG activate MAPKs and induce cytoprotective heat shock proteins in intestinal epithelial cells. Am J Physiol-Cell Physiol 290(4):C1018–C1030

    PubMed  CAS  Google Scholar 

  • Todorov SD, Dicks LMT (2004) Effect of medium components on bacteriocin production by Lactobacillus pentosus ST151BR, a strain isolated from beer produced by the fermentation of maize, barley and soy flour. World J Microbiol Biotechnol 20(6):643–650

    CAS  Google Scholar 

  • van der Aa Kühle A, Jespersen L (2003) The taxonomic position of Saccharomyces boulardii as evaluated by sequence analysis of the D1/D2 domain of 26S rDNA, the ITS1-5.8S rDNA-ITS2 region and the mitochondrial cytochrome-c oxidase II gene. Syst Appl Microbiol 26(4):564–571

    PubMed  Google Scholar 

  • van der Aa Kühle A, Skovgaard K, Jespersen L (2005) In vitro screening of probiotic properties of Saccharomyces cerevisiae var. boulardii and food-borne Saccharomyces cerevisiae strains. Int J Food Microbiol 101(1):29–39

    PubMed  Google Scholar 

  • van Pijkeren JP, Canchaya C, Ryan KA, Li Y, Claesson MJ, Sheil B, Steidler L, O’Mahony L, Fitzgerald GF, van Sinderen D, O’Toole PW (2006) Comparative and functional analysis of sortase-dependent proteins in the predicted secretome of Lactobacillus salivarius UCC118. Appl Environ Microbiol 72(6):4143–4153

    PubMed  Google Scholar 

  • Velez MP, Verhoeven TLA, Draing C, Von Aulock S, Pfitzenmaier M, Geyer A, Lambrichts I, Grangette C, Pot B, Vanderleyden J, De Keersmaecker SCJ (2007) Functional analysis of D-alanylation of lipoteichoic acid in the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microbiol 73(11):3595–3604

    CAS  Google Scholar 

  • Ventura M, Canchaya C, van Sinderen D, Fitzgerald GF, Zink R (2004) Bifidobacterium lactis DSM 10140: identification of the atp (atpBEFHAGDC) operon and analysis of its genetic structure, characteristics, and phylogeny. Appl Environ Microbiol 70(5):3110–3121

    PubMed  CAS  Google Scholar 

  • Ventura M, Canchaya C, Fitzgerald GF, Gupta RS, van Sinderen D (2007a) Genomics as a means to understand bacterial phylogeny and ecological adaptation: the case of bifidobacteria. Antonie Van Leeuwenhoek 91(4):351–372

    Google Scholar 

  • Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D (2007b) Genomics of actinobacteria: tracing the evolutionary history of an ancient phylura. Microbiol Mol Biol Rev 71(3):495–548

    CAS  Google Scholar 

  • Wall T, Bath M, Britton RA, Jonsson H, Versalovic J, Roos S (2007) The early response to acid shock in Lactobacillus reuteri involves the ClpL chaperone and a putative cell wall-altering esterase. Appl Environ Microbiol 73(12):3924–3935

    PubMed  CAS  Google Scholar 

  • Walter J, Heng NC, Hammes WP, Loach DM, Tannock GW, Hertel C (2003) Identification of Lactobacillus reuteri genes specifically induced in the mouse gastrointestinal tract. Appl Environ Microbiol. 69(4):2044–2051

    PubMed  CAS  Google Scholar 

  • Walter J, Loach DM, Alqumber M, Rockel C, Hermann C, Pfitzenmaier M, Tannock GW (2007) D-alanyl ester depletion of teichoic acids in Lactobacillus reuteri 100-23 results in impaired colonization of the mouse gastrointestinal tract. Environ Microbiol 9(7):1750–1760

    PubMed  CAS  Google Scholar 

  • Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439(7075):484–489

    PubMed  CAS  Google Scholar 

  • Weiss GM, Jespersen L (2010) Transcriptional analysis of genes associated with stress and adhesion in Lactobacillus acidophilus NCFM during the passage through an in vitro gastrointestinal tract model. J Mol Microbiol Biotechnol 18(4):206–214

    PubMed  CAS  Google Scholar 

  • Yan F, Polk DB (2002) Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J Biol Chem 277(52):50959–50965

    PubMed  CAS  Google Scholar 

  • Yan F, Cao H, Cover TL, Whitehead R, Washington MK, Polk DB (2007) Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132(2):562–575

    PubMed  CAS  Google Scholar 

  • Yuan J, Wang B, Sun ZK, Bo X, Yuan X, He X, Zhao HQ, Du XY, Wang F, Jiang Z, Zhang L, Jia LL, Wang YF, Wei KH, Wang J, Zhang XM, Sun YS, Huang LY, Zeng M (2008) Analysis of host-inducing proteome changes in Bifidobacterium longum NCC2705 grown in vivo. J Proteome Res 7(1):375–385

    PubMed  CAS  Google Scholar 

  • Zamfir M, Brezeanu A, de Vuyst L (2007) Bactericidal effect of acidophilin 801, a bacteriocin produced by Lactobacillus acidophilus IBB 801. Roman Biotechnol Lett 12(6):3521–3531

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Moslehi-Jenabian, S., Nielsen, D.S., Jespersen, L. (2011). Application of Molecular Biology and Genomics of Probiotics for Enteric Cytoprotection. In: Malago, J., Koninkx, J., Marinsek-Logar, R. (eds) Probiotic Bacteria and Enteric Infections. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0386-5_6

Download citation

Publish with us

Policies and ethics