Skip to main content

Factors Causing Disturbances of the Gut Microbiota

  • Chapter
  • First Online:
Probiotic Bacteria and Enteric Infections

Abstract

The gut microbiota is part and parcel of the innate immunity that protects the host against enteric pathogens. Soon after birth, its composition starts to establish in the infant depending upon the method of delivery and the environment. Factors like nutrition, antimicrobial usage, age, changes in intestinal motility, behavioural changes, and several others, subsequently affect the individual’s microbiotal composition throughout life. The effects are beneficial when the microbiotal population is dominated by protective bacteria, particularly Bifidobacteria and Lactobacillus and to a lesser extent, some Bacteroides species while the numbers of potentially pathogenic organisms like Clostridium species and Escherichia coli are low or undetectable. Noticeable effects that are of clinical significance are due to reduced number of beneficial bacteria with or without subsequent overgrowth of potentially pathogenic microbiota species and alterations in secreted proteins or metabolites and fermentation products. Since large numbers of particular beneficial bacteria and or their fermentation products are pivotal to host immunity, their disturbances often lead to enteric disorders such as diarrhoea and chronic inflammatory bowel disease. In this chapter the key factors that disturb or affect the gut microbiota and their potential in development of enteric disorders are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adlerberth I, Strachan DP, Matricardi PM, Ahrné S, Orfei L, Aberg N, Perkin MR, Tripodi S, Hesselma B, Saalman R, Coates AR, Bonanno CL, Panetta V, Wold AE (2007) Gut microbiota and development of atopic eczema in 3 European birth cohorts. J Allergy Clin Immunol 120:343–350

    Article  PubMed  CAS  Google Scholar 

  • Al Jumaili IJ, Shibley M, Lishman AH, Record CO (1984) Incidence and origin of Clostridium difficile in neonates. J Clin Microbiol 19:77–78

    PubMed  CAS  Google Scholar 

  • Alm JS, Swartz J, Björkstén B, Engstrand L, Engströn J, Kühn I, Lilja G, Möllby R, Norin E, Pershagen G, Reinders C, Wreiber K, Scheynius A (2002) An anthroposophic lifestyle and intestinal microflora in infancy. Pediatr Allergy Immunol 13:402–411

    Article  PubMed  Google Scholar 

  • Attebery HR, Sutter VL, Finegold SM (1972) Effect of a partially chemically defined diet on normal human faecal flora. Am J Clin Nutr 25:1391–1398

    PubMed  CAS  Google Scholar 

  • Bailey MT, Coe CL (1999) Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Dev Psychobiol 35:146–155

    Article  PubMed  CAS  Google Scholar 

  • Bartosch S, Fite A, Macfarlane GT, McMurdo ME (2004) Characterization of bacterial communities in faeces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the faecal microbiota. Appl Environ Microbiol 70:3575–3581

    Article  PubMed  CAS  Google Scholar 

  • Beaugerie L, Petit JC (2004) Microbial-gut interactions in health and disease. Antibiotic-associated diarrhoea. Best Pract Res Clin Gastroenterol 18:337–352

    Article  PubMed  CAS  Google Scholar 

  • Bennet R, Nord CE (1987) Development of the faecal anaerobic microflora after caesarean section and treatment with antibiotics in newborn infants. Infection 15:332–336

    Article  PubMed  CAS  Google Scholar 

  • Bezirtzoglou E (1997) The intestinal microflora during the first weeks of life. Anaerobe 3:173–177

    Article  PubMed  CAS  Google Scholar 

  • Bingham SA (1999) High-meat diets and cancer risk. Proc Nutr Soc 58:243–248

    Article  PubMed  CAS  Google Scholar 

  • Burkitt DP (1971) Epidemiology of cancer of the colon and rectum. Cancer 28:3–13

    Article  PubMed  CAS  Google Scholar 

  • Butler LM, Sinha R, Millikan RC, Martin CF, Newman B, Gammon MD, Ammerman AS, Sandler RS (2003) Heterocyclic amines, meat intake, and association with colon cancer in a population-based study. Am J Epidemiol 157:434–445

    Article  PubMed  CAS  Google Scholar 

  • Collins SM, Bercik P (2009) The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease. Gastroenterology 136:2003–2014

    Article  PubMed  Google Scholar 

  • Crane J, Pearce N, Shaw R, Fitzharris P, Mayers C (1994) Asthma and having siblings. BMJ 309:272

    Article  PubMed  CAS  Google Scholar 

  • Crowther JS, Drasar BS, Goddard P, Hill MJ, Johnson K (1973) The effect of a chemically defined diet on the faecal flora and faecal steroid concentration. Gut 14:790–793

    Article  PubMed  CAS  Google Scholar 

  • Donskey CJ, Hujer AM, Das SM, Pultz NJ, Bonomo RA, Rice LB (2003) Use of denaturing gradient gel electrophoresis for analysis of the stool microbiota of hospitalized patients. J Microbiol Meth 54:249–256

    Article  CAS  Google Scholar 

  • Edlund C, Nord CE (2000) Effect on the human normal microflora of oral antibiotics for treatment of urinary tract infections. J Antimicrob Chemother 46(1 Suppl):41–48

    Article  CAS  Google Scholar 

  • Engelbrektson A, Korzenik JR, Pittler A, Sanders ME, Klaenhammer TR, Leyer G, Kitts CL (2009) Probiotics to minimize the disruption of faecal microbiota in healthy subjects undergoing antibiotic therapy. J Med Microbiol 58:663–670

    Article  PubMed  CAS  Google Scholar 

  • Eutamene H, Bueno L (2007) Role of probiotics in correcting abnormalities of colonic flora induced by stress. Gut 56:1495–1497

    Article  PubMed  CAS  Google Scholar 

  • Finegold SM, Mathisen GE, George WL (1983) Changes in human intestinal flora related to the administration of antimicrobial agents. Academic Press, London, pp 355–445

    Google Scholar 

  • Franks AH, Harmsen HJ, Raangs GC, Jansen GJ, Schut F, Welling GW (1998) Variations of bacterial populations in human faeces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64:3336–3345

    PubMed  CAS  Google Scholar 

  • Gareau MG, Jury J, MacQueen G, Sherman PM, Perdue MH (2007) Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 56:1522–1528

    Article  PubMed  CAS  Google Scholar 

  • Gavini F, Cayuela C, Antoine J-M, Lecoq C, Lefebvre B, Membre J-M, Neut C (2001) Differences in the spatial distribution of bifidobacterial and enterobacterial species in human faecal microflora of three different (children, adults, elderly) age groups. Microbial Ecol Health Dis 13:40–45

    Article  Google Scholar 

  • Gibbs S, Surridge H, Adamson R, Cohen B, Bentham G, Reading R (2004) Atopic dermatitis and the hygiene hypothesis: a case-control study. Int J Epidemiol 33:199–207

    Article  PubMed  Google Scholar 

  • Gorbach SL, Goldin BR (1992) Nutrition and the gastrointestinal microflora. Nutr Rev 50:378–381

    Article  PubMed  CAS  Google Scholar 

  • Gronlund MM, Lehtonen OP, Eerola E, Kero P (1999) Faecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. J Pediatr Gastroenterol Nutr 28:19–25

    Article  PubMed  CAS  Google Scholar 

  • Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519

    Article  PubMed  Google Scholar 

  • Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, Welling GW (2000) Analysis of intestinal microflora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30:61–67

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Sakamoto M, Benno Y (2002) Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol 46:535–548

    PubMed  CAS  Google Scholar 

  • He F, Ouwehand AC, Isolauri E, Hosoda M, Benno Y, Salminen S (2001) Differences in composition and mucosal adhesion of bifidobacteria isolated from healthy adults and healthy seniors. Curr Microbiol 43:351–354

    Article  PubMed  CAS  Google Scholar 

  • Heimesaat MM, Fischer A, Siegmund B, Kupz A, Niebergall J, Fuchs D, Jahn HK, Freudenberg M, Loddenkemper C, Batra A, Lehr HA, Liesenfeld O, Blaut M, Göbel UB, Schumann RR, Bereswill S (2007) Shift towards pro-inflammatory intestinal bacteria aggravates acute murine colitis via Toll-like receptors 2 and 4. PLoS One 2(7):e662

    Article  PubMed  Google Scholar 

  • Hookman P, Barkin JS (2007) Review: Clostridium difficile associated disorders/diarrhoea and Clostridium difficile colitis: the emergence of a more virulent era. Dig Dis Sci 52:1071–1075

    Article  PubMed  Google Scholar 

  • Hooper LV, Bry L, Falk PG, Gordon JI (1998) Host-microbial symbiosis in the mammalian intestine: exploring as internal ecosystem. Bioessays 20:336–243

    Article  PubMed  CAS  Google Scholar 

  • Hopkins MJ, Sharp R, Macfarlane GT (2001) Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 48:198–205

    Article  PubMed  CAS  Google Scholar 

  • Hughes R, Cross AJ, Pollock JRA, Bingham S (2001) Dose-dependent effect of dietary meat on endogenous colonic N-nitrosation. Carcinogenesis 22:199–202

    Article  PubMed  CAS  Google Scholar 

  • Imase K, Takahashi M, Tanaka A, Tokunaga K, Sugano H, Tanaka M, Ishida H, Kamiya S, Takahashi S (2008) Efficacy of Clostridium butyricum preparation concomitantly with Helicobacter pylori eradication therapy in relation to changes in the intestinal microbiota. Microbiol Immunol 52:156–161

    Article  PubMed  CAS  Google Scholar 

  • Kassinen A, Krogius-Kurikka L, Mäkivuokko H, Rinttilä T, Paulin L, Corander J, Malinen E, Apajalahti J, Palva A (2007) The faecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133:24–33

    Article  PubMed  CAS  Google Scholar 

  • Kim KH, Fekety R, Batts DH, Brown D, Cudmore M, Silva J Jr, Waters D (1981) Isolation of Clostridium difficile from the environment and contacts of patients with antibiotic-associated colitis. J Infect Dis 143:42–50

    Article  PubMed  CAS  Google Scholar 

  • Koppelman GH, Jansen DF, Schouten JP, van der Heide S, Bleecker ER, Meyers DA, Postma DS (2003) Sibling effect on atopy in children of patients with asthma. Clin Exp Allergy 33:170–175

    Article  PubMed  CAS  Google Scholar 

  • Lay C, Sutren M, Rochet V, Saunier K, Doré J, Rigottier-Gois L (2005) Design and validation of 16S rDNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ Microbiol 7:933–946

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Pimentel M (2006) Bacteria and syndrome: the evidence forsmall intestinal bacterial overgrowth. Curr Gastroenterol Rep 8:305–311

    Article  PubMed  Google Scholar 

  • Ley RE, Turnbaugh P, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Newton T, Weisbrodt N, Moody F (1993) Intestinal migrating myoelectric complexes in rats with acute pancreatitis and bile duct ligation. J Surg Res 55:182–187

    Article  PubMed  CAS  Google Scholar 

  • Luperchio SA, Schauer DB (2001) Molecular pathogenesis of Citrobacter rodentium and transmissible murine colonic hyperplasia. Microbes Infect 3:333–340

    Article  PubMed  CAS  Google Scholar 

  • Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, Finlay BB (2007) Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of enterobacteriaceae. Cell Host Microbe 2:119–129

    Article  PubMed  CAS  Google Scholar 

  • Mackie RI, Sghir A, Gaskins HR (1999) Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 69:1035S–1045S

    PubMed  CAS  Google Scholar 

  • Macpherson A, Khoo UY, Forgacs I, Philpott-Howard J, Bjarnason I (1996) Mucosal antibodies in inflammatory bowel disease are directed against intestinal bacteria. Gut 38:365–375

    Article  PubMed  CAS  Google Scholar 

  • Mai V, Braden CR, Heckendorf J, Pironis B, Hirshon JM (2006) Monitoring of stool microbiota in subjects with diarrhoea indicates distortions in composition. J Clin Microbiol 44:4550–4552

    Article  PubMed  Google Scholar 

  • Mai V, McCrary QM, Sinha R, Glei M (2009) Associations between dietary habits and body mass index with gut microbiota composition and faecal water genotoxicity: an observational study in African American and Caucasian American volunteers. Nutr J 8:49

    Article  PubMed  Google Scholar 

  • Mäkivuokko H, Tiihonen K, Tynkkynen S, Paulin L, Rautonen N (2010) The effect of age and non-steroidal anti-inflammatory drugs on human intestinal microbiota composition. Br J Nutr 103:227–234

    Article  PubMed  Google Scholar 

  • Malinen E, Rinttilä T, Kajander K, Mättö J, Kassinen A, Krogius L, Saarela M, Korpela R, Palva A (2005) Analysis of the faecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. Am J Gastroenterol 100:373–382

    Article  PubMed  CAS  Google Scholar 

  • Mariat D, Firmesse O, Levenez F, Guimarăes VD, Sokol H, Doré J, Corthier G, Furet JP (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiology 9:123

    Article  PubMed  CAS  Google Scholar 

  • Mitsuoka T (1992) Intestinal flora and aging. Nutr Rev 50:438–446

    Article  PubMed  CAS  Google Scholar 

  • Moody F, Haley-Russell D, Muncy D (1995) Intestinal transit and bacterial translocation in obstructive pancreatitis. Dig Dis Sci 40:1798–1804

    Article  PubMed  CAS  Google Scholar 

  • Moore WE, Moore LH (1995) Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol 61:3202–3207

    PubMed  CAS  Google Scholar 

  • Moro GE, Mosca F, Miniello V, Fanaro S, Jelinek J, Stahl B, Boehm G (2003) Effects of a new mixture of prebiotics on faecal flora and stools in term infants. Acta Paediatr Suppl 91:77–79

    PubMed  CAS  Google Scholar 

  • Navarre WW, Halsey TA, Walthers D, Frye J, McClelland M, Potter JL, Kenney LJ, Gunn JS, Fang FC, Libby SJ (2005) Co-regulation of Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA and PhoP/PhoQ. Mol Microbiol 56:492–508

    Article  PubMed  CAS  Google Scholar 

  • O’Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho AM, Quigley EM, Cryan JF, Dinan TG (2009) Early life stress alters behavior, immunity, and microbiota in rats: implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 65:263–267

    Article  PubMed  Google Scholar 

  • Ouwehand AC, Isolauri E, Kirjavainen PV, Salminen SJ (1999) Adhesion of four Bifidobacterium strains to human intestinal mucus from subjects in different age groups. FEMS Microbiol Lett 172:61–64

    Article  PubMed  CAS  Google Scholar 

  • Peltonen R, Ling WH, Hanninen O, Eerola E (1992) An uncooked vegan diet shifts the profile of human faecal microflora: computerized analysis of direct stool sample gas-liquid chromatography profiles of bacterial cellular fatty acids. Appl Environ Microbiol 58:3660–3666

    PubMed  CAS  Google Scholar 

  • Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511–521

    Article  PubMed  Google Scholar 

  • Peschel A, Sahl HG (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4:529–553

    Article  PubMed  CAS  Google Scholar 

  • Rafter J, Glinghammar B (1998) Interactions between the environment and genes in the colon. Eur J Cancer Prev 7(Suppl):S69–S74

    Article  PubMed  Google Scholar 

  • Rastall RA (2004) Bacteria in the gut: friends and foes and how to alter the balance. J Nutr 134(Suppl):2022S–2026S

    PubMed  CAS  Google Scholar 

  • Rigottier-Gois L, Bourhis AGL, Gramet G, Rochet V, Doré J (2003) Fluorescent hybridisation combined with flow cytometry and hybridisation of total RNA to analyse the composition of microbial communities in human faeces using 16S rRNA probes. FEMS Microbiol Ecol 43:237–245

    Article  PubMed  CAS  Google Scholar 

  • Rinne MM, Gueimonde M, Kalliomaki M, Hoppu U, Salminen SJ, Isolauri E (2005) Similar bifidogenic effects of prebiotic-supplemented partially hydrolyzed infant formula and breastfeeding on infant gut microbiota. FEMS Immunol Med Microbiol 43:59–65

    Article  PubMed  CAS  Google Scholar 

  • Russell RM (1992) Changes in gastrointestinal function attributed to aging. Am J Clin Nutr 55(6 Suppl):1203S–1207S

    PubMed  CAS  Google Scholar 

  • Salminen S, Isolauri E (2006) Intestinal colonization, microbiota and probiotics. J Pediatr 149:S115–S120

    Article  CAS  Google Scholar 

  • Salminen S, Isolauri E, Onela T (1995) Gut flora in normal and disordered states. Chemotherapy 41(1 Suppl):5–15

    Article  PubMed  Google Scholar 

  • Schneider SM, Le Gall P, Girard-Pipau F, Piche T, Pompei A, Nano JL, Hébuterne X, Rampal P (2000) Total artificial nutrition is associated with major changes in the faecal flora. Eur J Nutr 39:248–255

    Article  PubMed  CAS  Google Scholar 

  • Seki H, Shiohara M, Matsumura T, Miyagawa N, Tanaka M, Komiyama A, Kurata S (2003) Prevention of antibiotic-associated diarrhoea in children by Clostridium buyricum MIYARI. Ped Internat 45:86–90

    Article  Google Scholar 

  • Severijnen AJ, van Kleef R, Hazenburg MP, van de Merwe J (1989) Cell wall fragments from major residents of the human intestinal flora induce chronic arthritis in rats. J Reumatol 16:1061–1068

    CAS  Google Scholar 

  • Singh VV, Toskes PP (2004) Small bowel bacterial overgrowth: presentation, diagnosis, and treatment. Curr Treat Options Gastroenterol 7:19–28

    Article  PubMed  Google Scholar 

  • Stecher B, Hardt WD (2008) The role of microbiota in infectious disease. Trend Microbiol 16:107–114

    Article  CAS  Google Scholar 

  • Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, Kremer M, Chaffron S, Macpherson AJ, Buer J, Parkhill J, Dougan G, von Mering C, Hardt WD (2007) Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol 5:2177–2189

    Article  PubMed  CAS  Google Scholar 

  • Stephen AM, Wiggins HS, Cummings JH (1987) Effect of changing transit time on colonic microbial metabolism in man. Gut 28:601–609

    Article  PubMed  CAS  Google Scholar 

  • Tannock GW, Savage DC (1974) Influences of dietary and environmental stress on microbial populations in the murine gastrointestinal tract. Infect Immun 9:591–598

    PubMed  CAS  Google Scholar 

  • Thompson-Chagoyán OC, Maldonado J, Gil A (2005) Aetiology of inflammatory bowel disease (IBD): role of intestinal microbiota and gut-associated lymphoid tissue immune response. Clin Nutr 24:339–352

    Article  PubMed  Google Scholar 

  • Tiihonen K, Tynkkynen S, Ouwehand A, Ahlroos T, Rautonen N (2008) The effect of ageing with and without non-steroidal anti-inflammatory drugs on gastrointestinal microbiology and immunology. Br J Nutr 100:130–137

    Article  PubMed  CAS  Google Scholar 

  • van Felius ID, Akkermans LM, Bosscha K, Verheem A, Harmsen W, Visser MR, Gooszen HG (2003) Interdigestive small bowel motility and duodenal bacterial overgrowth in experimental acute pancreatitis. Neurogastroenterol Motil 15:267–276

    Article  PubMed  Google Scholar 

  • van Vliet MJ, Tissing WJE, Dun CAJ, Meessen NEL, Kamps WA, de Bont ESJM, Harmsen HJM (2009) Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut. Clin Infect Dis 49:262–270

    Article  PubMed  Google Scholar 

  • Warny M, Pepin J, Fang A, Killgore G, Thompson A, Brazier J, Frost E, McDonald LC (2005) Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 366:1079–1084

    Article  PubMed  CAS  Google Scholar 

  • Wiström J, Norrby SR, Myhre EB, Eriksson S, Granström G, Lagergren L, Englund G, Nord CE, Svenungsson B (2001) Frequency of antibiotic-associated diarrhoea in 2462 antibiotic-treated hospitalized patients: a prospective study. J Antimicrob Chemother 47:43–50

    Article  PubMed  Google Scholar 

  • Wlodarska M, Finlay BB (2010) Host immune response to antibiotic perturbation of the microbiota. Mucosal Immuol 3:100–103

    Article  CAS  Google Scholar 

  • Wollowski I, Rechkemmer G, Pool-Zobel BL (2001) Protective role of probiotics and prebiotics in colon cancer. Am J Clin Nutr 73(Suppl):S451–445

    Google Scholar 

  • Woodmansey EJ (2007) Intestinal bacteria and ageing. J Appl Microbiol 102:1178–1186

    Article  PubMed  CAS  Google Scholar 

  • Woodmansey EJ, McMurdo ME, Macfarlane GT, Macfarlane S (2004) Comparison of compositions and metabolic activities of faecal microbiotas in young adults and in non-antibiotic-treated elderly subjects. Appl Env Microbiol 70:6113–6122

    Article  CAS  Google Scholar 

  • Young VB, Schmidt TM (2004) Antibiotic-associated diarrhoea accompanied by large-scale alterations in the composition of the faecal microbiota. J Clin Microbiol 42:1203–1206

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua J. Malago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Malago, J.J., Koninkx, J.F. (2011). Factors Causing Disturbances of the Gut Microbiota. In: Malago, J., Koninkx, J., Marinsek-Logar, R. (eds) Probiotic Bacteria and Enteric Infections. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0386-5_4

Download citation

Publish with us

Policies and ethics