Late Cainozoic Floras of Iceland pp 233-290 | Cite as
The Classic Surtarbrandur Floras
- 929 Downloads
Abstract
The classic Surtarbrandur floras of Iceland are 12 Ma (late Serravallian) and belong to the Brjánslækur-Seljá Formation. They make up the most diverse macroflora known from the Miocene of Iceland, with the highest number of exotic angiosperms recorded from this period (Laurophyllum, Liriodendron, Magnolia, Platanus, and Sassafras). Unlike in the older and younger floras, Fagus is absent from the macrofossil and pollen record, suggesting that the older F. friedrichii had not yet been replaced by the later immigrating F. gussonii. The plant assemblages recovered from the Brjánslækur-Seljá Formation represent azonal riparian lowland and upland forests and zonal hardwood forests in the vicinity of a lake followed higher up by mixed broad-leaved deciduous and conifer forests. The plant assemblages reflect the culmination of warm and moist vegetation in Iceland in the late Serravallian. The climatic and vegetation optimum recorded in Iceland for this stage does not reflect the general trend of cooling after the Mid-Miocene Climatic Optimum (17–15 Ma), as seen in many other floras in the northern hemisphere.
Keywords
Mean Annual Temperature Upland Forest Central Volcano Sandstone Unit Miocene FloraReferences
- Akhmetiev, M. A., Bratzeva, G. M., Giterman, R. E., Golubeva, L. V., & Moiseyeva, A. I. (1978). Late Cenozoic stratigraphy and flora of Iceland. Transactions of the Academy of Sciences USSR, 316, 1–188.Google Scholar
- Armstrong, R. L., Lemann, W. P., & Malde, H. E. (1975). K-Ar dating, Quaternary and Neogene volcanic rocks of the Snake River Plain, Idaho. American Journal of Science, 274, 225–252.CrossRefGoogle Scholar
- Aulenback, K. R., & LePage, B. A. (1998). Taxodium wallisii sp. nov. – First occurrence of Taxodium from the Upper Cretaceous. International Journal of Plant Sciences, 159, 367–390.CrossRefGoogle Scholar
- Berggren, W., Kent, D. V., Swisher, C. C. III., & Aubry, M.-P. (1995). A revised Cenozoic geochronology and chronostratigraphy. In W. A. Berggren, D. V. Kent, M.-P. Aubry, & J. Hardenbol (Eds.), Geochronology, time scales and global stratigraphic correlation (pp. 129–212). Tulsa, Oklahoma: SEPM Special Publication 54.Google Scholar
- Chaloner, B. W. (1999). Plant and spore compression in sediments. In T. P. Jones & N. P. Rowe (Eds.), Fossil plants and spores: modern techniques (pp. 36–40). London: Geological Society.Google Scholar
- Chaney, R. W., & Axelrod, D. I. (1959). Miocene Floras of the Columbia Plateau. Part II. Systematic Considerations (part II, pp. 135–237). Washington, DC.: Carnegie Institution of Washington Publication 617.Google Scholar
- Denk, T., Grímsson, F., & Kvaček, Z. (2005). The Miocene floras of Iceland and their significance for late Cainozoic North Atlantic biogeography. Botanical Journal of the Linnean Society, 149, 369–417.CrossRefGoogle Scholar
- Flora of China Editorial Committee. (1999). Flora of China, Cycadaceae through Fagacaeae (Vol. 4). St. Louis: Missouri Botanical Garden Press. 453 pp.Google Scholar
- Flora of North America Editorial Committee. (1993). Flora of North America North of Mexico, Pteridophytes and Gymnosperms (Vol. 2). New York: Oxford University Press. 496 pp.Google Scholar
- Flora of North America Editorial Committee. (1997). Flora of North America North of Mexico, Magnoliophyta: Magnoliidae and Hamamelidae (Vol. 3). New York: Oxford University Press. 616 pp.Google Scholar
- Flower, B. P., & Kennett, J. P. (1994). The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology, 108, 537–555.CrossRefGoogle Scholar
- Friedrich, W. L. (1966). Zur Geologie von Brjánslaekur (Nordwest-Island) unter besonderen Berücksichtigung der fossilen Flora. Sonderveröffentlichungen des Geologischen Institutes der Universität Köln, 10, 1–110.Google Scholar
- Friedrich, W. L., & Símonarson, L. A. (1981). Die fossile Flora Islands: Zeugin der Thule- Landbrücke. Spektrum der Wissenschaft, 10(1981), 22–31.Google Scholar
- Grímsson, F. (2007). The Miocene floras of Iceland. Origin and evolution of fossil floras from North-West and Western Iceland, 15 to 6 Ma. Ph.D. thesis, University of Iceland, Reykjavík. 273 pp.Google Scholar
- Heer, O. (1868). Flora fossilis arctica 1. Die Fossile Flora der Polarländer enthaltend die in Nordgrönland, auf der Melville-Insel, im Banksland, am Mackenzie, in Island und in Spitzbergen entdeckten fossilen Pflanzen. Zürich: F. Schulthess. 192 pp.CrossRefGoogle Scholar
- Iwatsuki, K., Yamazaki, T., Boufford, D. E., & Ohba, H. (Eds.). (2000). Flora of Japan. Vol. 1 Pteridophyta and Gymnospermae. Tokyo: Kodansha. 302 pp., reprint of 1995.Google Scholar
- Jóhannesson, H., & Sæmundsson, K. (1989). Geological map of Iceland. 1:500 000. Bedrock Geology (1st ed.). Reykjavík: Icelandic Museum of Natural History and Icelandic Geodetic Survey.Google Scholar
- Komarov, V. L. (1970). Flora of the U.S.S.R (Vol. 5). Jerusalem: Israel Program for Scientific Translations. 593 pp.Google Scholar
- Köppen, W., & Geiger, R. (1928). Klimakarte der Erde. Wall-map 150 cm × 200 cm. Gotha: Verlag Justus Perthes.Google Scholar
- Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.CrossRefGoogle Scholar
- Kovar-Eder, J., & Kvaček, Z. (2007). The integrated plant record (IPR) to reconstruct Neogene vegetation: the IPR-vegetation analysis. Acta Palaeobotanica, 47, 391–418.Google Scholar
- Kovar-Eder, J., Jechorek, H., Kvaček, Z., & Parashiv, V. (2008). The integrated plant record: an essential tool for reconstructing Neogene zonal vegetation in Europe. Palaios, 23, 97–111.CrossRefGoogle Scholar
- Kryshtofovich, A. N., & Baikovskaya, T. I. (1965). Sarmatian flora of Krynka. Moscow-Leningrad: Russian Academy of Sciences. 134 pp.Google Scholar
- Kutuzkina, E. F. (1964). The Sarmatian Flora of Armavir (in Russian). In A. L. Takhtajan (Ed.), Palaeobotanica V (pp. 145–230). Moscow-Leningrad: Nauka.Google Scholar
- Kvaček, Z., Velitzelos, D., & Velitzelos, E. (2002). Late Miocene flora of Vegora Macedonia N. Greece. Athens: Korali Publications. 175 pp.Google Scholar
- Kvaček, Z., Kováč, M., Kovar-Eder, J., Doláková, N., Jechorek, H., Parashiv, V., Kováčová, M., & Sliva, L. (2006). Miocene evolution of landscape and vegetation in the Central Paratethys. Geologica Carpathica, 57, 295–310.Google Scholar
- Landmælingar Íslands. (1984). Uppdráttur Íslands. Blað 13, Barðaströnd. Scale 1:100000.Google Scholar
- Mai, H. D. (1995). Tertiäre Vegetationsgeschichte Europas. Jena: Gustav Fischer. 691 pp.Google Scholar
- Manchester, S. R. (1999). Biogeographical relationships of North American Tertiary floras. Annals of the Missouri Botanical Garden, 86, 472–522.CrossRefGoogle Scholar
- Manchester, S. R., Chen, Z.-D., Lu, A.-M., & Uemura, K. (2009). Eastern Asian endemic seed plant genera and their paleogeographic history throughout the Northern Hemisphere. Journal of Systematics and Evolution, 47, 1–42.CrossRefGoogle Scholar
- Matthews, J. F., Jr., & Ovenden, L. E. (1990). Late Tertiary Plant Macrofossils from localities in Arctic/Subarctic North America: a review of the data. Arctic, 43, 364–392.Google Scholar
- McDougall, I., Kristjansson, L., & Saemundsson, K. (1984). Magnetostratigraphy and geochronology of northwest Iceland. Journal of Geophysical Research, 89, 7029–7060.CrossRefGoogle Scholar
- Ohwi, J. (1965). Flora of Japan. Washington, DC: Smithsonian Institution. 1067 pp.Google Scholar
- Saemundsson, K. (1979). Outline of the geology of Iceland. Jökull, 29, 7–28.Google Scholar
- Schenk, M. F., Thienpont, C.-N., Koopman, W. J. M., Gilissen, L. J. W. J., & Smulders, M. J. M. (2008). Phylogenetic relationships in Betula (Betulaceae) based on AFLP markers. Tree Genetics and Genomes, 4, 911–924.CrossRefGoogle Scholar
- Thompson, R. S., Anderson, K. H., and Bartlein, P. J. (1999). Atlas of relations between climatic parameters and distribution of important trees and shrubs in North America-Hardwoods. U.S. Geological Survey Professional Paper, 1650-B, 1–423.Google Scholar
- Utescher, T., & Mosbrugger, V. (2009). Palaeoflora database. http://www.geologie.unibonn.de/Palaeoflora. Accessed 27 September 2010.
- Wang, C.-W. (1961). The forests of China, with a survey of grassland and desert vegetation. Maria Moors Cabot Foundation, Publ. No. 5. Cambridge, Massachusetts: Harvard University. 282 pp.Google Scholar
- White, J. M., Ager, T. A., Adam, D. P., Leopold, E. B., Giu, G., Jetté, H., & Schweger, C. E. (1997). An 18 million year record of vegetation and climate change in northwestern Canada and Alaska: tectonic and global climatic correlates. Palaeogeography, Palaeoclimatology, Palaeoecology, 130, 293–306.CrossRefGoogle Scholar
- Windisch, P. (1886). Beiträge zur Kenntnis der Tertiärflora von Island. Inaugural-Dissertation behufs Erlangung der philosophischen Doctorwürde der Hohen philosophischen Facultät der Universität Leipzig. Halle a. d. S.: Gebauer-Schwetschke’sche Buchdruckerei. 52 pp.Google Scholar
- Windisch, P. (1886b). Beiträge zur Kenntniss der Tertiärflora von Island. Zeitschrift für Naturwissenschaften, 4(5), 215–262.Google Scholar
- Worm, O. (1655). Museum Wormianum seu historia rerum rariorum. Leiden, Amsterdam: Ex officina Elseviriorum. 389 pp.Google Scholar
- Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–693.PubMedCrossRefGoogle Scholar