The Archaic Floras

  • Thomas DenkEmail author
  • Friðgeir Grímsson
  • Reinhard Zetter
  • Leifur A. Símonarson
Part of the Topics in Geobiology book series (TGBI, volume 35)


The oldest plant fossils currently known from Iceland are ca 15 Ma, their deposition coinciding with the Mid-Miocene Climatic Optimum. At this time, forests in Iceland were dominated by mixed broadleaved deciduous and ­coniferous taxa with a few broadleaved evergreen genera such as Rhododendron and Ilex. Lowland forests were dominated by Glyptostrobus. Questions about the colonization history of Iceland or proto-Iceland are of particular interest since not much is known about the availability of effective land bridges allowing for colonization from Europe and/or North America at that time. In addition to geological data, in this chapter we use two lines of biological evidence to speculate about the early colonization of Iceland. First, we will examine the biogeographic patterns of key taxa such as Cryptomeria, Rhododendron ponticum-type, and Fagus friedrichii. Then we look at dispersal modes found in early colonizers of Iceland. Dispersal modes of at least some taxa indicate that Iceland was connected to the adjacent continents at the time of colonization. However, it cannot be determined when exactly this early colonization happened. The taxa recorded in the oldest sedimentary rocks in Iceland may have had different origins, either representing elements that were already present in the region since the Palaeogene or colonizing proto-Iceland from North America/Greenland and/or Europe later in the Neogene.


Middle Miocene Mean Annual Temperature Plant Fossil Upland Forest Modern Analogue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akhmetiev, M. A., Bratzeva, G. M., Giterman, R. E., Golubeva, L. V., & Moiseyeva, A. I. (1978). Late Cenozoic stratigraphy and flora of Iceland. Transactions of the Academy of Sciences USSR, 316, 1–188.Google Scholar
  2. Áskelsson, J. (1946). Um gróðurmenjar í Þórishlíðarfjalli við Selárdal. Andvari, 71, 80–86.Google Scholar
  3. Áskelsson, J. (1956). Myndir úr jarðfræði Íslands IV. Fáeinar plöntur úr surtarbrandslögunum. Náttúrufræðingurinn, 26, 42–48.Google Scholar
  4. Áskelsson, J. (1957). Myndir úr jarðfræði Íslands VI. Náttúrufræðingurinn, 27, 22–29.Google Scholar
  5. Boulter, M. C. (1969). Cryptomeria – A significant component of the European Tertiary, Paläontologische Abhandlungen B 3. Paläobotanik, 3–4, 279–287.Google Scholar
  6. Boulter, M. C., & Chaloner, W. G. (1970). Neogene fossil plants from Derbyshire (England). Review of Palaeobotany and Palynology, 10, 61–78.CrossRefGoogle Scholar
  7. Boulter, M. C., & Kvaček, Z. (1989). The Palaeocene flora of the Isle of Mull. Special Papers in Palaeontology, 42, 1–149.Google Scholar
  8. Braun, E. L. (1950). Deciduous forests of Eastern North America. Caldwell: Blackburn. 596 pp.Google Scholar
  9. Budantsev, L. J. (1992). Early stages of formation and dispersal of the temperate flora in the boreal region. Botanical Review, 58, 1–48.CrossRefGoogle Scholar
  10. Budantsev, L. J. (1997). Late Eocene flora of western Kamchatka. Russian Academy of Sciences Proceedings of Komarov Botanical Institute, 19, 1–115.Google Scholar
  11. Chaney, R. W., & Axelrod, D. I. (1959). Miocene Floras of the Columbia Plateau. Part II. Systematic Considerations (part II, pp. 135–237).Washington, DC.: Carnegie Institution of Washington Publication 617.Google Scholar
  12. Chelebaeva, A. I., & Shancer, A. E. (1988). Litologija i stratigrafija mezozoja i kajnozoja vostochnyh rajonov SSSR [Lithology and stratigraphy of the Mesozoic and Cenozoic of the USSR eastern regions]. In P. P. Timofeev & J. B. Gladenkov (Eds.), Sbornik nauchnyh trudov [Collection of scientific papers] (pp. 135–148). Moscow: Geological Institute.Google Scholar
  13. Christensen, E. F. (1975). The Søby Flora: Fossil plants from the Middle Miocene delta deposits of the Søby-Fasterholt area, Central Jutland, Denmark. Part I. Danmarks Geologiske Undersøgelse 103(2), 1–41.Google Scholar
  14. Christensen, E. F. (1976). The Søby Flora: Fossil plants from the Middle Miocene delta deposits of the Søby-Fasterholt area, Central Jutland, Denmark. Part II. Danmarks Geologiske Undersøgelse, 108(2), 1–49.Google Scholar
  15. Christensen, E. F. (1978). The Søby Flora: Fossil plants from the Middle Miocene delta deposits of the Søby-Fasterholt area, Central Jutland, Denmark. Part III. Manuscript of unpublished thesis, University of Aarhus, 48 pp.Google Scholar
  16. Dallmann, W. K. (1999). Lithostratigraphic Lexicon of Svalbard. Norsk Polarinstitutt: Tromsø. 318 pp.Google Scholar
  17. Dawson, T. E. (1998). Fog in the Californian redwood forest: Ecosystem inputs and use by plants. Oecologia, 117, 476–485.CrossRefGoogle Scholar
  18. Denk, T. (1998). The beech (Fagus L.) in western Eurasia – An actualistic approach. Feddes Repertorium, 109, 435–463.CrossRefGoogle Scholar
  19. Denk, T. (2003). Phylogeny of Fagus L. (Fagaceae) based on morphological data. Plant Systematics and Evolution, 240, 55–81.CrossRefGoogle Scholar
  20. Denk, T. (2004). Revision of Fagus from the Tertiary of Europe and southwestern Asia and its phylogenetic implications. Documenta naturae, 150, 1–72.Google Scholar
  21. Denk, T., & Grimm, G. W. (2009). The biogeographic history of beech trees. Review of Palaeobotany and Palynology, 158, 83–100.CrossRefGoogle Scholar
  22. Denk, T., Frotzler, N., & Davitashvili, N. (2001). Vegetational patterns and distribution of relict taxa in humid temperate forests and wetlands of Georgia (Transcaucasia). Biological Journal of the Linnean Society, 72, 287–332.CrossRefGoogle Scholar
  23. Denk, T., Grimm, G. W., & Hemleben, V. (2005). Patterns of molecular and morphological differentiation in Fagus (Fagaceae): Phylogenetic implications. American Journal of Botany, 92, 1006–1016.PubMedCrossRefGoogle Scholar
  24. Dolezych, M., & Schneider, W. (2007). Taxonomie und Taphonomie von Koniferenhölzern und Cuticulae dispersae im 2. Lausitzer Flözhorizont (Miozän) des Senftenberger Reviers. Palaeontographica B, 276, 1–95.Google Scholar
  25. Ferguson, D. K. (1971). The Miocene flora of Kreuzau – western Germany 1. The leaf remains. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen. Afdelning Natuurkunde, 60, 1–297.Google Scholar
  26. Flora of China Editorial Committee. (1999). Flora of China, Cycadaceae through Fagacaeae (Vol. 4). St. Louis: Missouri Botanical Garden. 453 pp.Google Scholar
  27. Flora of North America Editorial Committee. (1993). Flora of North America North of Mexico, Pteridophytes and Gymnosperms (Vol. 2). New York/Oxford: Oxford University Press. 475 pp.Google Scholar
  28. Flora of North America Editorial Committee. (1997). Flora of North America North of Mexico, Magnoliophyta: Magnoliidae and Hamamelidae (Vol. 3). New York: Oxford University Press. 616 pp.Google Scholar
  29. Friis, E. M. (1985). Angiosperm fruits and seeds from the Middle Miocene of Jutland (Denmark). Det Kongelige Danske Videnskaberne Selskab Biologiske Skrifter, 24(3), 1–165.Google Scholar
  30. Fyles, J. G., Hills, L. V., Matthews, J. V., Jr., Barendregt, R., Bakers, J., Irving, E., & Jette, H. (1994). Ballast Brook and Beaufort formations (Late Tertiary) on northern Banks Island, Arctic Canada. Quaternary International, 22(23), 141–171.CrossRefGoogle Scholar
  31. Graham, A. (1999). Late Cretaceous and Cenozoic history of North American Vegetation. New York: Oxford University Press. 350 pp.Google Scholar
  32. Gray, J. (1985). Interpretation of co-occurring megafossils and pollen: A comparative study with Clarkia as an example. In C. J. Smiley, A. E. Leviton, & M. Berson (Eds.), Late Cenozoic history of the Pacific Northwest: Interdisciplinary studies on the Clarkia Fossil Beds of Northern Idaho (pp. 185–223). San Francisco: Pacific Division of the American Association for the Advancement of Science.Google Scholar
  33. Grímsson, F., & Denk, T. (2005). Fagus from the Miocene of Iceland: Systematics and ­biogeographical considerations. Review of Palaeobotany and Palynology, 134, 27–54.CrossRefGoogle Scholar
  34. Grímsson, F., & Denk, T. (2007). Floristic turnover in Iceland from 15 to 6 Ma – extracting ­biogeographical signals from fossil floral assemblages. Journal of Biogeography, 34, 1490–1504.CrossRefGoogle Scholar
  35. Grímsson, F., Denk, T., & Símonarson, L. A. (2007). Middle Miocene floras of Iceland – The early colonization of an island? Review of Palaeobotany and Palynology, 144, 181–219.CrossRefGoogle Scholar
  36. Grímsson, F., Denk, T., & Zetter, R. (2008). Pollen, fruits, and leaves of Tetracentron (Trochodendraceae) from the Cainozoic of Iceland and western North America and their palaeobiogeographic implications. Grana, 47, 1–14.CrossRefGoogle Scholar
  37. Hardarson, B. S., Fitton, J. G., Ellam, R. M., & Pringle, M. S. (1997). Rift relocation – a ­geochemical and geochronological investigation of a palaeo-rift in northwest Iceland. Earth and Planetary Science Letters, 153, 181–196.CrossRefGoogle Scholar
  38. Heer, O. (1859). Flora Tertiaria Helvetiae – Die tertiäre Flora der Schweiz (Vol. 3). Winterthur: J. Wurster & Compagnie. 378 pp.Google Scholar
  39. Heer, O. (1868). Flora fossilis arctica 1. Die Fossile Flora der Polarländer enthaltend die in Nordgrönland, auf der Melville-Insel, im Banksland, am Mackenzie, in Island und in Spitzbergen entdeckten fossilen Pflanzen. Zürich: Friedrich Schulthess. 192 pp.CrossRefGoogle Scholar
  40. Heer, O. (1868–1883). Flora fossilis arctica (7 volumes). Zürich: Friedrich Schulthess.Google Scholar
  41. Heer, O. (1869). Flora fossilis Alaskana. Kongliga Svenska Vetenskaps-Akademiens Handlingar, 8(4), 1–41.Google Scholar
  42. Heer, O. (1883). Flora fossilis arctica. Die Fossile Flora der Polarländer enthaltend den zweiten Theil der fossilen Flora Grönlands (Vol. 7). Zürich: J. Wurster & Compagnie. 275 pp.Google Scholar
  43. Hofmann, C.-C., Zetter, R., & Draxler, I. (2002). Pollen- und Sporenvergesellschaftungen aus dem Karpatium des Korneuburger Beckens (Niederösterreich). Beiträge zur Paläontologie Österreichs, 27, 17–43.Google Scholar
  44. Iwatsuki, K., Boufford, D. E., & Ohba, H. (2006). Flora of Japan. Volume IIa Angiospermae, Dicotyledonae, Archichlamideae (a). Tokyo: Kodansha. 550 pp.Google Scholar
  45. Jóhannesson, H., & Sæmundsson, K. (1989). Geological map of Iceland. 1:500 000. Bedrock geology (1st ed.). Reykjavík: Icelandic Museum of Natural History and Icelandic Geodetic Survey.Google Scholar
  46. Kilpper, K. (1968). Koniferen aus den tertiären Deckschichten des niederrheinischen Hauptflözes, 3. Taxodiaceae und Cupressaceae. Palaeontographica B, 124, 102–111.Google Scholar
  47. Knobloch, E. (1969). Tertiäre Floren von Mähren. Brno: Moravské Museum Brno. 201 pp.Google Scholar
  48. Koch, B. E. (1963). Fossil plants from the Lower Palaeocene of the Agatdalen (Angmârtussut) area, Central Nûgssuaq Peninsula Northwest Greenland. Meddelelser om Grønland, 172 (5), 1–120.Google Scholar
  49. Koch, B. E. (1984). A stratigraphical study of the Miocene browncoal bearing sequence of the Søby-Fasterholt area, Central Jutland, Denmark based upon fossil pollen. Søby-Fasterholt Brunkulsprojektet, Forskningsrapport 8. Geological Institue, University of Aarhus, 46 pp.Google Scholar
  50. Köppen, W. (1936). Das geographische System der Klimate. In W. Köppen & R. Geiger (Eds.), Handbuch der Klimatologie, Bd. 1, Teil C (pp. 1–44). Berlin: Gebrüder Borntraeger.Google Scholar
  51. Köppen, W., & Geiger, R. (1928). Klimakarte der Erde, Wall-map 150 cm × 200 cm. Gotha: Verlag Justus Perthes.Google Scholar
  52. Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 259–263.CrossRefGoogle Scholar
  53. Kovar-Eder, J., Kvaček, Z., & Ströbitzer-Hermann, M. (2004). The Miocene flora of Parschlug (Styria, Austria) – Revision and synthesis. Annalen des Naturhistorischen Museums Wien A, 104, 45–161.Google Scholar
  54. Kristjánsson, L., Pätzold, R., & Preston, J. (1975). The palaeomagnetism and geology of the Patreksfjördur-Arnarfjördur region of northwest Iceland. Tectonophysics, 25, 201–216.CrossRefGoogle Scholar
  55. Kristjánsson, L., Hardarson, B. S., & Audunsson, H. (2003). A detailed palaeomagnetic study of the oldest (approximate to 15 Myr) lava sequences in Northwest Iceland. Geophysical Journal International, 155, 991–1005.CrossRefGoogle Scholar
  56. Kvaček, Z., & Rember, W. C. (2000). Shared Miocene conifers of the Clarkia flora and Europe. Acta Universitatis Carolinae-Geologica, 44, 75–85.Google Scholar
  57. Kvaček, Z., & Rember, W. C. (2007). Calocedrus robustior (Cupressaceae) and Taxus schorni (Taxaceae): Two new conifers from the middle Miocene Latah Formation of northern Idaho. PaleoBios, 27, 68–79.Google Scholar
  58. La Motte, R. S. (1936). The Upper Cedarville flora of nortwestern Nevada and adjacent California. Carnegie Institute of Washington Publications, 455, 57–142.Google Scholar
  59. Landmælingar Íslands (1990a). Uppdráttur Íslands. Blað 2, Selárdalur. Scale 1:100000.Google Scholar
  60. Landmælingar Íslands (1990b). Uppdráttur Íslands. Blað 11, Stigahlíð. Scale 1:100000.Google Scholar
  61. Liang, M.-M., Bruch, A., Collinson, M., Mosbrugger, V., Li, C.-S., Sun, Q.-G., & Hilton, J. (2003). Testing the climatic estimates from different palaeobotanical methods: An example from the Middle Miocene Shanwang flora of China. Palaeogeography, Palaeoclimatology, Palaeoecology, 198, 279–301.CrossRefGoogle Scholar
  62. Lieth, H., Berlekamp, J., Fuest, S., & Riediger, S. (1999). Climate Diagram World Atlas (CD-series: Climate and Biosphere). Leiden: Backhuys Publishers.Google Scholar
  63. Liu, Y.-S., & Basinger, J. F. (2000). Fossil Cathaya from the Canadian High Arctic. International Journal of Plant Sciences, 161, 829–847.CrossRefGoogle Scholar
  64. Liu, G., & Leopold, E. B. (1992). Paleoecology of a Miocene flora from the Shanwang formation, Shandong Province, northern East China. Palynology, 16, 187–212.CrossRefGoogle Scholar
  65. Liu, Y.-S., Guo, S., & Ferguson, D. K. (1996). Catalogue of Cenozoic megafossil plants in China. Palaeontographica B, 238, 141–179.Google Scholar
  66. Mai, D. H. (1995). Tertiäre Vegetationsgeschichte Europas. Jena/Stuttgart/New York: Gustav Fischer. 691 pp.Google Scholar
  67. Manchester, S. R. (1999). Biogeographical relationships of North American Tertiary floras. Annals of the Missouri Botanical Garden, 86, 472–522.CrossRefGoogle Scholar
  68. Manchester, S. R., & Chen, I. (2006). Tetracentron fruits from the Miocene of western North America. International Journal of Plant Sciences, 167, 601–605.CrossRefGoogle Scholar
  69. Matthews, J. F., Jr., & Ovenden, L. E. (1990). Late tertiary plant macrofossils from localities in Arctic/Subarctic North America: A review of the data. Arctic, 43, 364–392.Google Scholar
  70. McDougall, I., Kristjansson, L., & Saemundsson, K. (1984). Magnetostratigraphy and geochronology of Northwest Iceland. Journal of Geophysical Research, 89, 7029–7060.CrossRefGoogle Scholar
  71. McKenna, M. C. (1983a). Cenozoic paleogeography of North Atlantic land bridges. In M. H. P. Bott, S. Saxov, M. Talwani, & J. Thiede (Eds.), Structure and development of the Greenland-Scotland Ridge (pp. 351–399). New York: Plenum.CrossRefGoogle Scholar
  72. McKenna, M. C. (1983b). Holarctic landmass rearrangement, cosmic events, and Cenozoic terrestrial organisms. Annals of the Missouri Botanical Garden, 70, 459–489.CrossRefGoogle Scholar
  73. Meusel, H., Jäger, E., & Weinert, E. (1965). Vergleichende Chorologie der Zentraleuropäischen Flora. Text. Jena: VEB Gustav Fischer. 583 pp.Google Scholar
  74. Meyer, H. W., & Manchester, S. R. (1997). The Oligocene Bridge Creek flora of the John Day Formation. Oregon. University of California Publications in Geological Sciences, 141,1–195.Google Scholar
  75. Miranda, F., & Sharp, A. J. (1950). Characteristics of the vegetation in certain temperate regions of eastern Mexico. Ecology, 31, 313–333.CrossRefGoogle Scholar
  76. Moorbath, S., Sigurdsson, H., & Goodwin, R. (1968). K-Ar ages of the oldest exposed rocks in Iceland. Earth and Planetary Science Letters, 4, 197–205.CrossRefGoogle Scholar
  77. Nilsen, T. H. (1978). Lower Tertiary laterite on the Iceland-Faeroe Ridge and the Thulean land bridge. Nature, 274, 786–788.CrossRefGoogle Scholar
  78. Nixon, K. C., & Poole, J. M. (2003). Revision of the Mexican and Guatemalan species of Platanus (Platanaceae). Lundellia, 6, 103–137.Google Scholar
  79. Ohwi, J. (1965). Flora of Japan. Washington, DC: Smithsonian Institution. 1067 pp.Google Scholar
  80. Ozaki, K. (1987). Tetracentron leaves from the Neogene of Japan. Transactions and Proceedings of the Palaeontological Society of Japan, 146, 77–87.Google Scholar
  81. Ozaki, K. (1991). Late Miocene and Pliocene Floras in Central Honshu, Japan. Bulletin of Kanagawa Prefectural Museum, Natural Science Special Issue, 1–244.Google Scholar
  82. Peters, R. (1997). Beech forests. Geobotany (Vol. 24). Dordrecht: Kluwer. 169 pp.CrossRefGoogle Scholar
  83. Pigg, K. B., Dillhoff, R. M., DeVore, M. L., & Wehr, W. C. (2007). New diversity among the Trochodendraceae from the Early/Middle Eocene Okanogan highlands of British Columbia, Canada, and northeastern Washington State, United States. International Journal of Plant Sciences, 168, 521–532.CrossRefGoogle Scholar
  84. Poore, R. H. (2008). Neogene epeirogeny and the Iceland plume. Ph.D. thesis, University of Cambridge, Cambridge. 232 pp.Google Scholar
  85. Ravn, J. P. J. (1922). On the mollusca of the Tertiary of Spitsbergen. Norsk Polarinstitutt. Skrifter, 1(2): 1–28.Google Scholar
  86. Rember, W. C. (1991). Stratigraphy and paleobotany of Miocene lake sediments near Clarkia, Idaho. Ph.D Dissertation, University of Idaho, Moscow.Google Scholar
  87. Ridley, H. N. (1930). The Dispersal of Plants throughout the World. Ashford: L. Reeve & Co., Ltd. 744 pp.Google Scholar
  88. Saito, T., Wang, W.-M., & Nakagawa, T. (2000). Cathaya (Pinaceae) pollen from Mio-Pliocene sediments in the Himi area, Central Japan. Grana, 39, 288–293.CrossRefGoogle Scholar
  89. Schloemer-Jäger, A. (1958). Alttertiäre Pflanzen aus Flössen der Brögger-Halbinsel Spitzbergens. Palaeontographica B, 104, 39–103.Google Scholar
  90. Shen, C.-F. (1992). A monograph of the genus Fagus Tourn. ex L. (Fagaceae). Ph.D. dissertation, The City University of N.Y, New York. 390 pp.Google Scholar
  91. Shilin, S. G. (1974). The Tertiary floras of the plateau Ustjurk (Transcaspia). Leningrad: Komarov Botanical Institute Academy of Sciences USSR. 122 pp.Google Scholar
  92. Sun, Q.-G., Collinson, M. E., Li, C. S., Wang, Y. F., & Beerling, D. J. (2002). Quantitative reconstruction of palaeoclimate from the Middle Miocene Shanwang flora, eastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 180, 315–329.CrossRefGoogle Scholar
  93. Suzuki, K. (1967). Discovery of Tetracentron leaves from the Neogene in Japan. Proceedings. Japan Academy, 43, 526–530.Google Scholar
  94. Tanai, T., & Suzuki, N. (1963). Miocene floras of southwestern Hokkaido, Japan. In: The Tertiary Paleobotany Project (Ed.) Tertiary Floras of Japan. Miocene Floras (pp. 9–149). The Collaborating Association to commemorate the 80th Anniversary of the Geological Survey of Japan.Google Scholar
  95. Thiede, J., Winkler, A., Wolfwelling, T., Eldholm, O., Myhre, A. M., Baumann, K. H., Henrich, R., & Stein, R. (1998). Late Cenozoic history of the polar North Atlantic – Results from ocean drilling. Quaternary Science Review, 17, 185–208.CrossRefGoogle Scholar
  96. Thompson, R. S., Anderson, K. H., & Bartlein, P. J. (1999a). Atlas of relations between climatic parameters and distribution of important trees and shrubs in North America- Introduction and Conifers. U.S. Geological Survey Professional Paper 1650-A: 1–269.Google Scholar
  97. Thompson, R. S., Anderson, K. H., & Bartlein, P. J. (1999b). Atlas of relations between climatic parameters and distribution of important trees and shrubs in North America-Hardwoods. United States Geological Survey Professional Paper 1650-B: 1–423.Google Scholar
  98. Tiffney, B. H. (1994). Re-evaluation of the age of the Brandon Lignite (Vermont, USA) based on plant megafossil. Review of Palaeobotany and Palynology, 82, 299–315.CrossRefGoogle Scholar
  99. Traverse, A. (1994). Palynofloral geochronology of the Brandon Lignite of Vermont, USA. Review of Palaeobotany and Palynology, 82, 265–297.CrossRefGoogle Scholar
  100. van der Pijl, L. (1982). Principles of dispersal in higher plants (3rd ed.). Berlin/New York: Springer.CrossRefGoogle Scholar
  101. Wang, C.-W. (1961). The forests of China, with a survey of grassland and desert vegetation. Cambridge: Maria Moors Cabot Foundation, Publ. No. 5, Harvard University. 282 pp.Google Scholar
  102. White, J. M., & Ager, T. A. (1994). Palynology, paleoclimatology and correlation of Middle Miocene beds from Porcupine River (locality 90-1), Alaska. Quaternary International, 22/23, 43–77.CrossRefGoogle Scholar
  103. Whitlock, C., & Dawson, M. R. (1990). Pollen and vertebrates of the early Neogene Haughton Formation, Devon Island, Arctic Canada. Arctic, 43, 324–330.Google Scholar
  104. Wolfe, J. A. (1966). Tertiary plants from the Cook Inlet region, Alaska. United States Geological Survey Professional Paper, 398-B, 1–31.Google Scholar
  105. Wolfe, J. A. (1979). Temperature parameters of humid to mesic forests of Eastern Asia and relation to forests of other regions of the Northern Hemisphere and Australasia. Geological Survey Professional Paper, 1106, 1–37.Google Scholar
  106. Wolfe, J. A., & Tanai, T. (1980). The Miocene Seldovia Point flora from the Kenai Group, Alaska. Geological Survey Professional Paper, 1105, 1–52.Google Scholar
  107. Wolfe, J. A., Hopkins, D. M., & Leopold, E. B. (1966). Tertiary stratigraphy and paleobotany of the Cook Inlet region, Alaska. United States Geological Survey Professional Paper, 398-A, 1–29.Google Scholar
  108. Ying, T. S., Ma, C. G., Li, L. Q., Zhang, Z. S., & Zhang, W. X. (1983). Studies on the Cathaya communities. Acta Botanica Sinica, 25, 157–170.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Thomas Denk
    • 1
    Email author
  • Friðgeir Grímsson
    • 2
  • Reinhard Zetter
    • 2
  • Leifur A. Símonarson
    • 3
  1. 1.Department of PalaeobotanySwedish Museum of Natural HistoryStockholmSweden
  2. 2.Department of PalaeontologyUniversity of ViennaViennaAustria
  3. 3.Institute of Earth SciencesUniversity of IcelandReykjavikIceland

Personalised recommendations