The Biogeographic History of Iceland – The North Atlantic Land Bridge Revisited

  • Thomas DenkEmail author
  • Friðgeir Grímsson
  • Reinhard Zetter
  • Leifur A. Símonarson
Part of the Topics in Geobiology book series (TGBI, volume 35)


Plants lacking long distance dispersal mechanisms required a functioning land bridge to colonize Iceland, a route provided by the North Atlantic Land Bridge (NALB). During the Cainozoic, the NALB, also referred to as the Thulean route, came into existence in the latest Paleocene and Early Eocene, but there has been considerable debate about the timing of its termination. The North Atlantic Land Bridge consisted of the well defined subaerial Greenland-Scotland Transverse Ridge. The individual parts of this ridge may have undergone markedly different subsidence histories during the Neogene. At the western end of the NALB, possible links between Greenland and North America are provided by the shallow bathymetric sill at the Davis Strait between southern Baffin Land and southwestern Greenland, and, alternatively, the more northern land connection between the Queen Elizabeth Islands and Greenland. In this chapter, we use evidence from different disciplines (geology, palaeontology, phylogeography), amended with a large new palaeobotanical data set emerging from the present study, to evaluate the history of the North Atlantic Land Bridge and its potential role for transatlantic plant migration during the Neogene.


Late Miocene Middle Miocene Benthic Foraminifera Phylogeographic Study Land Bridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akhmetiev, M. A., Bratzeva, G. M., Giterman, R. E., Golubeva, L. V., & Moiseyeva, A. I. (1978). Late Cainozoic stratigraphy and flora of Iceland. Transactions of the Academy of Sciences USSR, 316, 1–188.Google Scholar
  2. Anderson, C. L. (2007). Dating divergence times in phylogenies. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 322. 79 pp.Google Scholar
  3. Berggren, W. A., & Schnitker, D. (1983). Cenozoic marine environments in the North Atlantic and Norwegian-Greenland Sea. In M. H. P. Bott, S. Saxow, M. Talwani, & J. Thiede (Eds.), Structure and development of the Greenland-Scotland Ridge: New methods and concepts (pp. 495–548). New York: Plenum.CrossRefGoogle Scholar
  4. Bott, M. H. P., Saxov, S., Talwani, M., & Thiede, J. (1983). Structure and development of the Greenland-Scotland Ridge. New York: Plenum. 685 pp.CrossRefGoogle Scholar
  5. Davies, R., Cartwright, J., Pike, L., & Line, C. (2001). Early Oligocene initiation of North Atlantic Deep Water formation. Nature, 410, 917–920.PubMedCrossRefGoogle Scholar
  6. Denk, T. (2006). Rhododendron ponticum var. sebinense in the Late Pleistocene flora of Hötting, Northern Calcareous Alps: Witness of a climate warmer than today? Veröffentlichungen des Tiroler Landesmuseums Ferdinandeum, 86, 43–66.Google Scholar
  7. Denk, T., & Grimm, G. W. (2009). The biogeographic history of beech trees. Review of Palaeobotany and Palynology, 158, 83–100.CrossRefGoogle Scholar
  8. Denk, T., Grímsson, F., & Kvaček, Z. (2005). The Miocene floras of Iceland and their significance for late Cainozoic North Atlantic biogeography. Botanical Journal of the Linnean Society, 149, 369–417.CrossRefGoogle Scholar
  9. Denk, T. & Grimm, G. W. (2009). The oaks of western Eurasia: Traditional classifications and evidence from two nuclear markers. Taxon, 59, 351–366.Google Scholar
  10. Denk, T., Grímsson, F., & Zetter, R. (2010). Episodic migration of oaks to Iceland – Evidence for a North Atlantic ‘land bridge’ in the latest Miocene. American Journal of Botany, 97, 276–287.PubMedCrossRefGoogle Scholar
  11. Donoghue, M. J., & Smith, S. A. (2004). Patterns in the assembly of temperate forests around the Northern Hemisphere. Philosophical Transactions of the Royal Society B – Biological Sciences, 359, 1633–1644.CrossRefGoogle Scholar
  12. Eldholm, O., Myhre, A. M., & Thiede, J. (1994). Cenozoic tectono-magmatic events in the North Atlantic: Potential palaeoenvironmental implications. In M. C. Boulter & H. C. Fisher (Eds.), Cenozoic plants and climates of the Arctic (NATO ASI Series, Vol. 127, pp. 35–55). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  13. Friedrich, W. L., & Símonarson, L. A. (1981). Die fossile Flora Islands: Zeugin der Thule- Landbrücke. Spektrum der Wissenschaft, 10(1981), 22–31.Google Scholar
  14. Funck, T., Jackson, H. R., Louden, K. E., & Klingelhöfer, F. (2007). Seismic study of the transform-rifted margin in Davis Strait between Baffin Island (Canada) and Greenland: What happens when a plume meets a transform. Journal of Geophysical Research, 112, B04402. doi:10.1029/2006JB004308.CrossRefGoogle Scholar
  15. Grímsson, F., & Denk, T. (2005). Fagus from the Miocene of Iceland: Systematics and biogeographical considerations. Review of Palaeobotany and Palynology, 134, 27–54.CrossRefGoogle Scholar
  16. Grímsson, F., & Denk, T. (2007). Floristic turnover in Iceland from 15 to 6 Ma extracting biogeographical signals from fossil floral assemblages. Journal of Biogeography, 34, 1490–1504.CrossRefGoogle Scholar
  17. Grímsson, F., Denk, T., & Símonarson, L. A. (2007). Middle Miocene floras of Iceland – the early colonization of an island? Review of Palaeobotany and Palynology, 144, 181–219.CrossRefGoogle Scholar
  18. Grímsson, F., Denk, T., & Zetter, R. (2008). Pollen, fruits, and leaves of Tetracentron (Trochodendraceae) from the Cainozoic of Iceland and western North America and their palaeobiogeographic implications. Grana, 47, 1–14.CrossRefGoogle Scholar
  19. Hably, L., Kvaček, Z., & Manchester, S. R. (2000). Shared taxa of land plants in the Oligocene of Europe and North America in context of Holarctic phytogeography. Acta Universitatis Carolinae – Geologica, 44, 59–74.Google Scholar
  20. Hoey, M. T., & Parks, C. R. (1991). Isozyme divergence between eastern Asian, North American, and Turkish species of Liquidambar (Hamamelidaceae). American Journal of Botany, 78, 938–947.CrossRefGoogle Scholar
  21. Knobloch, E. (1998). Der pliozäne Laubwald von Willershausen am Harz. Documenta naturae, 120, 1–302.Google Scholar
  22. Kvaček, Z., & Walther, H. (1989). Revision der mitteleuropäischen Fagaceen nach blattepidermalen Charakteristiken. II. Teil: Castanopsis (D.Don) Spach, Trigonobalanus Forman, Trigonobalanopsis Kvaček & Walther. Feddes Repertorium, 99, 395–418.Google Scholar
  23. Kvaček, Z., Velitzelos, D., & Velitzelos, E. (2002). Late Miocene flora of Vegora Macedonia N. Greece. Athens: Korali Publications. 175 pp.Google Scholar
  24. Larsen, B. (1983). Geology of the Greenland-Scotland Ridge in the Denmark Strait. In M. H. P. Bott, S. Saxow, M. Talwani, & J. Thiede (Eds.), Structure and development of the Greenland-Scotland Ridge: New methods and concepts (pp. 425–444). New York: Plenum.CrossRefGoogle Scholar
  25. Liu, Y.-S., Zetter, R., Ferguson, D. K., & Mohr, B. A. R. (2007). Discriminating fossil and evergeen Quercus pollen: A case study from the Miocene of eastern China. Review of Palaeobotany and Palynology, 145, 289–303.CrossRefGoogle Scholar
  26. Mabberly, D. J. (2008). Mabberley’s plant book (3rd ed.). Cambridge: Cambridge University Press. 1021 pp.Google Scholar
  27. McKenna, M. C. (1983b). Holarctic landmass rearrangement, cosmic events, and Cenozoic terrestrial organisms. Annals of the Missouri Botanical Garden, 70, 459–489.CrossRefGoogle Scholar
  28. McKenna, M. C. (1983a). Cenozoic paleogeography of North Atlantic land bridges. In M. H. P. Bott, S. Saxov, M. Talwani, & J. Thiede (Eds.), Structure and development of the Greenland-Scotland Ridge (pp. 351–399). New York: Plenum Press.CrossRefGoogle Scholar
  29. Miller, K. G., & Tucholke, B. E. (1983). Development of Cenozoic abyssal circulation south of the Greenland-Scotland Ridge. In M. H. P. Bott, S. Saxov, M. Talwani, & J. Thiede (Eds.), Structure and development of the Greenland-Scotland Ridge (pp. 549–589). New York: Plenum Press.CrossRefGoogle Scholar
  30. Milne, R. I. (2004). Phylogeny and biogeography of Rhododendron subsection Pontica, a group with a tertiary relict distribution. Molecular Phylogenetics and Evolution, 33, 389–401.PubMedCrossRefGoogle Scholar
  31. Nilsen, T. H. (1978). Lower Tertiary laterite on the Iceland-Faeroe Ridge and the Thulean land bridge. Nature, 274, 786–788.CrossRefGoogle Scholar
  32. Parks, C. R., & Wendel, J. F. (1990). Molecular divergence between Asian and North American species of Liriodendron (Magnoliaceae) with implications for interpretations of fossil floras. American Journal of Botany, 77, 1243–1256.CrossRefGoogle Scholar
  33. Piasecki, S. (2003). Neogene dinoflagellate cysts from Davis Strait, offshore West Greenland. Marine and Petroleum Geology, 20, 1075–1088.CrossRefGoogle Scholar
  34. Poore, R. H. (2008). Neogene Epeirogeny and the Iceland Plume. Ph.D. Thesis, University of Cambridge. 232 pp.Google Scholar
  35. Poore, R. H., Samworth, R., White, N., Jones, S., & McCave, I. (2006). Neogene overflow of Northern Component Water at the Greenland-Scotland Ridge. Geochemistry, Geophysics, Geosystems, 7(6), 24. doi:10.1029/2005GC001085.CrossRefGoogle Scholar
  36. Ramsay, A. T. S., Smart, C. W., & Zachos, J. C. (1998). A model of early to middle Miocene Deep Ocean circulation for the Atlantic and Indian Oceans. The Geological Society of London, 131, 55–70. Special Publications.CrossRefGoogle Scholar
  37. Ridley, H. N. (1930). The Dispersal of plants throughout the World. Ashford/Kent: L. Reeve & Co., Ltd. 744 pp.Google Scholar
  38. Schloemer-Jäger, A. (1958). Alttertiäre Pflanzen aus Flössen der Brögger-Halbinsel Spitzbergens. Palaeontographica B, 104, 39–103.Google Scholar
  39. Srivastava, S. P. (1983). Davis Strait: Structures, origin and evolution. In M. H. P. Bott, S. Saxow, M. Talwani, & J. Thiede (Eds.), Structure and development of the Greenland-Scotland Ridge: New methods and concepts (pp. 159–189). New York: Plenum.CrossRefGoogle Scholar
  40. Srivastava, S. P., & Arthur, M. (1989). Tectonic evolution of the Labrador Sea and Baffin Bay: Constraints imposed by regional geophysics and drilling results from Leg 1051. Proceedings of the Ocean Drilling Program, Scientific Results, 105, 989–1008.Google Scholar
  41. Steinþórsson, S. (1981). Ísland og flekakenningin. In S. Þórarinsson (Ed.), Náttúra Íslands (2nd ed., pp. 29–63). Reykjavík: Almenna bókafélagið.Google Scholar
  42. Stoker, M. S., Praeg, D., Hjelstuen, B. O., Laberg, J. S., Nielsen, T., & Shannon, P. M. (2005). Neogene stratigraphy and the sedimentary and oceanographic development of the NW European Atlantic margin. Marine and Petroleum Geology, 22, 977–1005.CrossRefGoogle Scholar
  43. Strauch, F. (1970). Die Thule-Landbrücke als Wanderweg und Faunenscheide zwischen Atlantik und Skandik im Tertiär. Geologische Rundschau, 60, 381–417.CrossRefGoogle Scholar
  44. Strauch, F. (1972). Phylogenese, Adaptation und Migration einiger nordischer mariner Molluskengenera (Neptunea, Panomya, Cyrtodaria und Mya). Abhandlungen der Senckenberg Gesellschaft für Naturforschung, 531, 1–211.Google Scholar
  45. Strauch, F. (1983). Geological history of the Iceland-Faeroe-Ridge and its influence on Pleistocene glaciations. In M. H. P. Bott, S. Saxow, M. Talwani, & J. Thiede (Eds.), Structure and development of the Greenland-Scotland Ridge: New methods and concepts (pp. 601–606). New York: Plenum Press.CrossRefGoogle Scholar
  46. Thiede, J., & Eldholm, O. (1983). Speculations about the paleodepth of the Greenland-Scotland Ridge during late Mesozoic and Cenozoic times. In M. H. P. Bott, S. Saxow, M. Talwani, & J. Thiede (Eds.), Structure and development of the Greenland-Scotland Ridge: New methods and concepts (pp. 445–456). New York: Plenum.CrossRefGoogle Scholar
  47. Tiffney, B. H. (1985). The Eocene North Atlantic Land Bridge: Its importance in Tertiary and modern phytogeography of the Northern Hemisphere. Journal of the Arnold Arboretum, 66, 243–273.Google Scholar
  48. Tiffney, B. H. (2000). Geographic and climatic influences on the Cretaceous and Tertiary history of Euramerican floristic similarity. Acta Universitatis Carolinae Geologica, 44, 5–16.Google Scholar
  49. Tiffney, B. H. (2008). Phylogeography, fossils, and Northern Hemisphere biogeography: the role of physiological uniformitarianism. Annals of the Missouri Botanical Garden, 95, 135–143.CrossRefGoogle Scholar
  50. Tiffney, B. H., & Manchester, S. R. (2001). The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the northern hemisphere Tertiary. International Journal of Plant Sciences, 162, S3–S17.CrossRefGoogle Scholar
  51. Walther, H., & Zetter, R. (1993). Zur Entwicklung der paläogenen Fagaceae Mitteleuropas. Palaeontographica B, 230, 183–194.Google Scholar
  52. Whitcher, N. I., & Wen, J. (2001). Phylogeny and biogeography of Corylus (Betulaceae): Inferences from ITS sequences. Systematic Botany, 26, 283–298.Google Scholar
  53. Winkworth, R. C., & Donoghue, M. J. (2006). Viburnum phylogeny based on combined molecular data: implications for taxonomy and biogeography. American Journal of Botany, 92, 653–666.CrossRefGoogle Scholar
  54. Xiang, Q.-Y., Soltis, D. E., & Soltis, P. S. (1998). The eastern Asian and eastern and western North America floristic disjunction: congruent phylogenetic patterns in seven diverse genera. Molecular Phylogenetics and Evolution, 10, 178–190.PubMedCrossRefGoogle Scholar
  55. Xiang, Q.-Y., Thomas, D. T., Zhang, W., Manchester, S. R., & Murrell, Z. (2006). Species level phylogeny of the genus Cornus (Cornaceae) based on molecular and morphological evidence – Implications for taxonomy and Tertiary intercontinental migration. Taxon, 55, 9–30.CrossRefGoogle Scholar
  56. Zetter, R. (1998). Palynological investigations from the Early Miocene lignite opencast mine Oberdorf (N Voitsberg, Styria, Austria). Jahrbuch der Geologischen Bundesanstalt, 140, 461–468.Google Scholar
  57. Zhou, S., Renner, S. S., & Wen, J. (2006). Molecular phylogeny and intra- and intercontinental biogeography of Calycanthaceae. Molecular Phylogenetics and Evolution, 39, 1–15.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Thomas Denk
    • 1
    Email author
  • Friðgeir Grímsson
    • 2
  • Reinhard Zetter
    • 2
  • Leifur A. Símonarson
    • 3
  1. 1.Department of PalaeobotanySwedish Museum of Natural HistoryStockholmSweden
  2. 2.Department of PalaeontologyUniversity of ViennaViennaAustria
  3. 3.Institute of Earth SciencesUniversity of IcelandReykjavikIceland

Personalised recommendations