Skip to main content

Landscape Assessment: The Ecological Profile

  • Chapter
  • First Online:
Landscape Indicators

Abstract

In recent decades, Landscape Ecology has consolidated a broad set of indicators to analyse and quantify the significant correlations between the morphological structure of a landscape mosaic and its ecosystem functions. These correlations define the principles of landscape organization on different scales space-time. This contribution proposes a review of some of these indicators, identifying those that the empirical evidence proved to be most effective in an ecologically oriented planning . The review concludes with the selection of two indexes, that for the high information content and for the wealth of experiments conducted on a national and international level, are particularly significant: Evenness and Biological territorial capacity (Btc). The technical requirements and the reliability at different scales of these indexes are detailed, with particular regard to the Piemonte territory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The threshold value pc is a theoretical value which must be increased or decreased in relation to the species in question. Each species, in fact, has a specific perception of the contiguity of a specific environment.

  2. 2.

    Btc represents a magnitude which can be precisely measured but, as the result requires considerable expenditure in terms of time and instrumentation, an estimate is often more practical.

  3. 3.

    The processes that enable a landscape to self-perpetuate, in other words to renew its fundamental components, are closely associated with the presence of vegetation, an element which plays a crucial role in the ecological functionality of the landscape system. In reality, the useful energy for the entire biosphere depends on photosynthesis and is subject to the action of autotrophic organisms.

  4. 4.

    The information content of the index/indicator depends on the detail of the base data used for the calculation. The vaster the area in question, the more probable it becomes that the information acquired with the indicator will be of a general nature, as it is harder to obtain uniform in-depth data.

  5. 5.

    The richness of different species in the community determines an increase in the number of rings in the food chain, greater probable biocenosis stability, a more efficient energy flow and matter cycle, corresponding to, in short, higher stability of the structure and in the function of the ecosystems. Furthermore, the control of any disturbances which could arise in a territory is closely related to ecological diversity. A disturbance of a certain size in a landscape with a low index of diversity, with just a few elements or just one, can cause changes of such a magnitude they cause the landscape to collapse. The same disturbance in a landscape with a high index of diversity, may be irrelevant. In fact, not all its elements react in the same way to the same disturbance, so the risk of collapse is almost equal to zero, and the probability that the environmental system as a whole will survive is high. Protecting and guaranteeing a higher level of ecological diversity therefore means increasing the environmental stability of a landscape.

  6. 6.

    Land coverage concerns the physical characteristics of earth surface such as the distribution of vegetation, water, glaciers, … and the physical characteristics induced by human activities. Land use however refers to the utilization and strategies for the management of certain land coverage by man.

  7. 7.

    With the implementation of the INSPIRE Directive (Directive 2007/2/EC) which establishes the Territorial Information Infrastructure (TII) of the European Union, the diffusion and the transversal shared use of territorial data by the public administration bodies has assumed a more and more fundamental role in the field of Geographical Information.

  8. 8.

    The following data was used to draw up the LCP:

    • Register of Farms: containing information on regional farmland use acquired at a cadastral parcel level, updated annually and geo-referenced with AGEA cadastral source data;

    • Forestry paper of the Territorial Forestry Plans (TFP): containing detailed information on woodland surfaces and seminatural environments (grazing land, open grassland, stabile meadows, grazing meadows, …) in Piemonte, which refers to period 2001–2005;

    • Report on the Status of the Territory (RST) and Numeric Regional Technical Paper (NRTP) with the limits of the urban surfaces updated at 2001–2005;

    • Plurimodal regional transportation graph: with continuous integrations and updates, reproduces the road network (motorways, A-road, regional roads, provincial roads and urban roads), the railway network (lines in use or disuse) and service footpaths of the previous types, summarizing them on the basis of the specifications of European standard GDF2 (Geographic Data Files) for the construction of topographical databases.

  9. 9.

    The LCP classification, in the same way as for the CORINE Land Cover Project, is organized in hierarchical levels. The first three levels have currently been defined and organized. The third, the one with the highest definition, identifies 33 land use/coverage classes.

  10. 10.

    The forestry categories correspond to physiognomical units defined on the basis of the dominance of one or more developing arboreal species.

References

General References to Assessment Systems and Scientific Publications on Landscape Ecology

  • Blondel J (1986) Biogéographie évolutive. Masson, Paris

    Google Scholar 

  • Colombo AG, Malcevschi S (eds) (1999) Manuale AAA degli Indicatori per la Valutazione di Impatto Ambientale, vol. 1, Indicatori degli ecosistemi terrestri. Centro VIA Italia, Associazione Analisti Ambientali, Federazione delle Associazioni Scientifiche e Tecniche

    Google Scholar 

  • Delbaere B (ed) (2003) Environmental risk assessment for European agriculture: interim report. European Centre for Nature Conservation, Tilburg. http://www.ecnc.org//Output_12 8.html#link184. Accessed 10 March 2009

  • Diegoli B, Garretti L, Gottero F, Peterlin G (2007) Land cover Piemonte: progettazione di un database geografico sulla copertura e l’uso delle terre della Regione Piemonte . Atti 11a Conferenza Nazionale ASITA, Turin 6–9 Nov 2007

    Google Scholar 

  • Fabbri P (2003) Paesaggio, pianificazione, sostenibilità. Alinea, Florence

    Google Scholar 

  • Fabbri P (2007) Principi ecologici per la progettazione del paesaggio. Angeli, Milan

    Google Scholar 

  • Farina A (1993) L’ecologia dei sistemi ambientali. Cleup, Padova

    Google Scholar 

  • Farina A (2001) Ecologia del paesaggio. Principi, metodi e applicazioni. UTET, Turin

    Google Scholar 

  • Farina A (2004) Lezioni di ecologia. UTET, Turin

    Google Scholar 

  • Forman RTT (1995) Land mosaics. The ecology of landscape and regions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Forman RTT, Godron M (1981) Patches and structural components for a landscape ecology. Bioscience 31:733–740

    Article  Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. Wiley, New York

    Google Scholar 

  • Ingegnoli V (1980) Ecologia e progettazione. CUSL, Milan

    Google Scholar 

  • Ingegnoli V (1993) Fondamenti di ecologia del paesaggio. CittàStudi, Milan

    Google Scholar 

  • Ingegnoli V (2002) Landscape ecology: a widening foundation. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Ingegnoli V, Giglio E (2005) Ecologia del paesaggio. Manuale per conservare gestire e pianificare l’ambiente. Esselibri, Napoli

    Google Scholar 

  • Kirk DL (1980) Biology today. Random House, New York

    Google Scholar 

  • Landsis g.e.i.e. et al (2002) Proposal on agri-environmental indicators PAIS . Project summary. http://web.ccdr.alg.pt/sids/indweb/imagens/docs_extra/Outros docs/PAIS.pdf. Accessed July 2008

  • Lorenz K (1980) L’etologia: fondamenti e metodi. Bollati Boringhieri, Turin

    Google Scholar 

  • Lowe JC, Moryadas S (1975) The Geography of movement. Houghton Mifflin, Boston

    Google Scholar 

  • Malcevschi S, Poli G (2008) Indicatori per il paesaggio in Italia. Raccolta di esperienze. CATAP, Coordinamento Associazioni tecnico-scientifiche per l’Ambiente ed il Paesaggio. http://www.catap.eu Accessed 7 Sept 2008

  • Naveh Z (1990) Ecologia del paesaggio: storia e recenti sviluppi. EM linea ecol 4:3–9

    Google Scholar 

  • Naveh Z, Lieberman A (1984) Landscape ecology theory and application. Springer-Verlag, New York

    Google Scholar 

  • O’Neill RV et al (1986) A hierarchical concept of ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • O’Neill RV, Johnson AR, King AW (1989) A hierarchical framework for the analysis of scale. Landsc Ecol 3(3/4):193–205

    Article  Google Scholar 

  • Pielou EC (1975) Ecological diversity. John Wiley, New York

    Google Scholar 

  • Pielou EC (1977) Mathematical ecology. Wiley, New York

    Google Scholar 

  • Rossaro B (1998) Analisi della struttura delle comunità. In: Provini A, Galassi S, Marchetti R (eds) Ecologia Applicata. CittàStudi, Milan

    Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Stauffer D (1985) Introduction to percolation theory. Taylor and Francis, London

    Book  Google Scholar 

  • Unwin DJ (1981) Introductory spatial analysis. Methuen, London

    Google Scholar 

  • Wascher DM (ed) (2005) European landscape character areas. Typologies, cartography and indicators for the assessment of sustainable landscapes. Final project report. ELCAI , European Landscape Character Assessment Initiative. http://www.landscape-europe.net/ELCAI_projectreport_book_amended.pdf. Accessed 20 Sept 2008

  • Zonneveld IS (1995) Land ecology. An introduction to landscape ecology as a base for land evaluation, land management and conservation. SPB Academic Publishing, Amsterdam

    Google Scholar 

Literature, Studies and Applicative Cases on Landscape Ecology Indicators

  • Bernini F, Padoa-Schioppa E (2002) Gli indicatori di ecologia del paesaggio negli studi di impatto ambientale. In: Gibelli G and Santolini R (eds) “SIEP-IALE 1990-2000”. 10 anni di ecologia del paesaggio in Italia: ricerca, scopi e ruoli. Atti VI Congresso Nazionale SIEP-IALE, Trieste, 1–2 giugno 2000

    Google Scholar 

  • Cantwell MD, Forman RTT (1993) Landscape graphs: ecological modelling with graph theory to detect configurations common to diverse landscapes. Landsc Ecol 4:239–255

    Article  Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology. Wiley, New York

    Google Scholar 

  • Fabbri P, Finotto F (2007) Nuovi strumenti per la pianificazione del paesaggio: grafo ecologico e perequazione. In: Ghersi A (ed) Politiche europee per il paesaggio: proposte operative. Gangemi, Rome

    Google Scholar 

  • Finotto F (2006) La progettazione ecologica del paesaggio rurale: un caso applicativo del grafo ecologico. In: Peano A (ed) Il paesaggio nel futuro del mondo rurale. Esperienze e riflessioni sul territorio torinese. Alinea, Florence

    Google Scholar 

  • Gardner RH et al (1987a) Neutral models for the analysis of broad-scale landscape pattern. Landsc Ecol 1:19–28

    Article  Google Scholar 

  • Gardner RH et al (1987b) A percolation model of ecological flows. In: Hansen AJ, Di Castri F (eds) Landscape boundaries. Consequences for biotic diversity and ecological flows. Springer-Verlag, New York

    Google Scholar 

  • Gardner RH et al (1989) Quantifying scale-dependent effects of animal movement with simple percolation models. Landsc Ecol 3(3/4):217–227

    Article  Google Scholar 

  • Gibelli MG (1999) Ecologia del paesaggio e area vasta. Urb Inf 165:61–62

    Google Scholar 

  • Hill MO (1973) Diversity and evenness : a unifying notation and its consequences. Ecology 2:427–432

    Article  Google Scholar 

  • Hunsaker CT et al (1994) Sampling to characterize landscape patterns. Landsc Ecol 3:207–226

    Article  Google Scholar 

  • Ingegnoli V (1997) Trasformazioni territoriali e indici ecologici regionali: i casi più significativi in Italia. In: Ingegnoli V (ed) Esercizi di ecologia del paesaggio. CittàStudi, Milan

    Google Scholar 

  • Li H, Reynolds JF (1993) A new contagion index to quantifying spatial patterns of landscape. Landsc Ecol 3:155–162

    Article  Google Scholar 

  • Margalef R (1958) Information theory in ecology. Gen Syst 3:36–71

    Google Scholar 

  • McIntosh RP (1967) An index of diversity and the relation of certain concepts to diversity. Ecology 48(3):392–404

    Article  Google Scholar 

  • Menhinick EF (1964) A comparison of some species individuals diversity indices applied to sample of field insects. Ecology 45: 859–861

    Article  Google Scholar 

  • O’Neill RV, Gardner RH, Turner MG (1992) A hierarchical neutral model for landscape analysis. Landsc Ecol 1:55–61

    Article  Google Scholar 

  • O’Neill RV et al (1988) Indices of landscape pattern. Landsc Ecol 3:153–162

    Google Scholar 

  • Palmeri F(1996) L’ecologia del paesaggio in Italia. Alcuni casi applicativi. In: Ingegnoli V, Pignatti S (eds) L’ecologia del paesaggio in Italia. CittàStudi, Milan

    Google Scholar 

  • Riitters KH et al (1996) A note on contagion indices for landscape analysis. Landsc Ecol 4:197–202

    Article  Google Scholar 

  • Romme WH (1982) Fire and landscape diversity in subalpine forests of Yellowstone national park. Ecol Monogr 52:199–211

    Article  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature 163:688

    Article  Google Scholar 

  • Stoddart DR (1965) The shape of atolls. Mar Geol 3:369–383

    Article  Google Scholar 

  • Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20:171–197

    Article  Google Scholar 

  • Turner MG (1990) Spatial and temporal analysis of landscape patterns. Landsc Ecol 4:21–30

    Article  Google Scholar 

  • Turner MG, Gardner RH (1990) Quantitative methods in landscape ecology. Springer-Verlag, New York

    Google Scholar 

  • Turner MG et al (1989) Effects of changing spatial scale on the analysis of landscape pattern. Landsc Ecol 3(3/4):153–162

    Article  Google Scholar 

Web Sources

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Finotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Finotto, F. (2011). Landscape Assessment: The Ecological Profile. In: Cassatella, C., Peano, A. (eds) Landscape Indicators. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0366-7_4

Download citation

Publish with us

Policies and ethics