Skip to main content

Eddies and Circulation: Lessons from Oceans and the GFD Lab

  • Conference paper
Book cover IUTAM Symposium on Turbulence in the Atmosphere and Oceans

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 28))

  • 958 Accesses

Abstract

This is a discussion of aspects of the energy-dominant eddies/waves of the global ocean emphasizing their finite-amplitude dynamics in the upper levels of the ocean and their reshaping of the deep branches of the general circulation. We rely heavily on observations which, only in the past few years have achieved the status of a global quasi-synoptic observing system, making possible an increasingly complete understanding of the time-dependent oceans. In stratified oceans and atmospheres a significant fraction of the baroclinic energy is captured in mesoscale structures which resist the classic cascades of geostrophic turbulence toward barotropic (depth-independent) states and thence to larger horizontal scale. Eddies both stir the deep ocean, shape its PV field, transfer surface momentum downward to drive large recirculation gyres, and greatly alter the western boundary currents. In effect, eddies redefine the general circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afanasyev YD, Rhines PB, Lindahl EG (2009) Velocity and potential vorticity fields measured by Altimetric Imaging Velocimetry in a rotating two-layer fluid. Exps in Fluids. doi:10.1007/s00348-009-0689-3

    Google Scholar 

  2. Anderson DLT, Killworth PD (1979) Nonlinear propagation of long Rossby waves. Deep-Sea Res 26:1033-1050

    Article  Google Scholar 

  3. Bailey D, Rhines PB, Hakkinen S (2005) Pathways and formation of North Atlantic Deep Water in a coupled ice-ocean model of the Arctic-North Atlantic Oceans. Clim Dyn. doi:10.1007/s00382-005-0050-3

    Google Scholar 

  4. Baldwin M, Rhines PB, Huang H-P, McIntyre ME (2007) The jet-stream conundrum. Science 315: 467-468

    Article  Google Scholar 

  5. Blumen W (1978) Uniform potential vorticity flow, I. J Atmos Sci 35: 774-783

    Article  Google Scholar 

  6. Bower AS, Lozier MS, Gary SF, Bōning C (2009) Interior pathways of the North Atlantic meridional overturning circulation. Nature. doi:10.1038/nature07979

    Google Scholar 

  7. Chassignet E, Cushman-Roisin B (1991) On the influence of the lower layer in the propagation of ocean eddies. J Phys Oceanogr 21: 939-957

    Article  Google Scholar 

  8. Held I, Pierrehumbert RT, Garner ST, Swanson KL (1995) Surface quasi-geostrophic dynamics. J Fluid Mech 282: 1-20

    Article  Google Scholar 

  9. Jenkins WJ, Rhines PB (1980) Tritium in the deep North Atlantic Ocean, Nature 286: 877-880.

    Article  Google Scholar 

  10. Keffer T (1983) The ventilation of the world ocean: the potential vorticity field. J Phys Oceanogr 15: 509-523

    Article  Google Scholar 

  11. Kim K (1978) Instability of baroclinic Rossby waves; energetics in a two-layer ocean. Deep Sea Res 25: 795-814

    Article  Google Scholar 

  12. Klein P, Hua B-L, Lapeyre G, Capet X, Le Gentil S, Sasaki H (2008) Upper ocean turbulence from high-resolution 3-D simulations. J Phys Oceanogr 38: 1748-1763

    Article  Google Scholar 

  13. Lebel DL, Smethie WM, Rhein M, Kieke D, Fine RA, Bullister JL, Min D-H, Roether W, Weiss RF, Andrie C, Smythe-Wright D and Jones EP (2008) The formation rate of North Atlantic Deep Water and Eighteen Degree Water calculated from CFC-11 inventories observed during WOCE. Deep-Sea Res I, 55: 891-910

    Article  Google Scholar 

  14. Lecointre A, Penduff T, Cipollini P, Tailleux R and Barnier B (2008) Depth dependence of westward-propagating North Atlantic features diagnosed from altimetry and a numerical 1/6°model. Ocean Sci 4: 99-113

    Article  Google Scholar 

  15. Lumpkin R (2003) Decomposition of surface drifter observations in the Atlantic Ocean. Geophys Res Lett. doi:10.1029/2003GL017519

    Google Scholar 

  16. McDowell S, Rhines PB, Keffer T (1982) North Atlantic potential vorticity and its relation to the general circulation, J. Phys. Oceanogr. 12: 1417-1436

    Article  Google Scholar 

  17. McWilliams J (1977) Maps from the Mid-Ocean Dynamics Experiment: Part II. Potential vorticity and its conservation. J Phys Oceanogr 6: 828-846

    Article  Google Scholar 

  18. Matsuura T (1995) The evolution of frontal-geostrophic eddies in the ocean. J Phys Oceanogr 25: 2298-2318

    Article  Google Scholar 

  19. Maximenko NA, Niiler PP (2004) The Global Ocean: A 10-year portrait of the near-surface circulation. IPRC Climate, 4: 4-5

    Google Scholar 

  20. MODE Group (1978) The Mid-Ocean Dynamics Experiment. Deep-Sea Res 25: 859-910

    Article  Google Scholar 

  21. Nakamura M, Kagimoto T, (2006) Potential vorticity and eddy potential enstrophy in the North Atlantic Ocean simulated by a global eddy-resolving model. Dyn Atmos Oceans 41: 28-59

    Article  Google Scholar 

  22. Nicholson D, Emerson S, Eriksen CE (2008) Net community production in the deep euphotic zone of the subtropical North Pacific gyre from glider surveys. Limnology & Oceanogr 53: 2226-2236

    Article  Google Scholar 

  23. Oort A, Anderson LA, Peixoto JP (1994) Estimates of the energy cycle of the oceans. J Geophys Res 99(C4): 7665-7688

    Article  Google Scholar 

  24. Rhines PB (1977) The dynamics of unsteady currents. In: Goldberg ED (ed) The Sea, V6, Wiley-Interscience, New York

    Google Scholar 

  25. Rhines P (1979) Geostrophic turbulence. Ann Revs Fluid Mech 11: 404-441

    Google Scholar 

  26. Rhines, PB (1989) Deep planetary circulation over topography: simple models of mid-ocean flows. J Phys. Oceanogr 19: 1449-1470

    Article  Google Scholar 

  27. Rhines PB, Holland WR (1979) A theoretical discussion of eddy-driven mean flows. Dyn Atmos Ocean 3: 289-325

    Article  Google Scholar 

  28. Rhines PB, Schopp, R (1991) Wind-driven circulation: theory and quasigeostrophic simulations for non-symmetric winds. J Phys Oceanogr 21: 1438-1469

    Article  Google Scholar 

  29. Rhines PB, Lindahl EG, Mendez AH (2007) Optical Altimetry: a new method for observing rotating fluids with applications to Rossby waves on a polar beta-plane. J Fluid Mech 572: 389-412

    Article  Google Scholar 

  30. Schneider T, Walker CC (2005) Self-organization of atmospheric macroturbulence into critical states of weak nonlinear eddy-eddy interactions. J Atmos Sci 63: 1569-1586

    Article  Google Scholar 

  31. Siegel A, Weiss JB, Toomre J, McWilliams J, Berloff P, Yavneh A (2001) Eddies and vortices in ocean basin dynamics. Geophys Res Lett 16: 3183-3186

    Article  Google Scholar 

  32. Theiss J (2006) A generalized Rhines effect and storms on Jupiter. Geophys Res Lett. doi:10.1029/2005GL025379

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter B. Rhines .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Rhines, P.B. (2010). Eddies and Circulation: Lessons from Oceans and the GFD Lab. In: Dritschel, D. (eds) IUTAM Symposium on Turbulence in the Atmosphere and Oceans. IUTAM Bookseries, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0360-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0360-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0359-9

  • Online ISBN: 978-94-007-0360-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics