Skip to main content

Inertia-gravity-wave generation: a geometric-optics approach

  • Conference paper

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 28))

Abstract

The generation of inertia-gravity waves in the atmosphere and oceans is examined using a geometric-optics approach. This approach considers the dynamics of a small-scale wavepacket in prescribed time-dependent, balanced flows. The wavepacket is assumed to be in the so-called wave-capture regime, where the wave intrinsic frequency is negligible compared to the Doppler shift. The dynamics is reduced to a number of ordinary differential equations describing the evolution of the wavepacket position, of its wavevector, and of three scalar fields describing the wavepacket amplitude and polarisation. The approach clearly identifies two classes of wave-generation processes: unbalanced instabilities, associated with linear interactions between inertia-gravity waves, and spontaneous generation, associated with a conversion between vortical and inertia-gravity modes. Applications to simple steady flows and to random-strain models are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, L., Papanicolaou, G., Wihstutz, V.: Asymptotic analysis of the Lyapunov exponent and rotation number of the random oscillator and applications. SIAM J. Appl. Math. 46, 427–450 (1986)

    Article  Google Scholar 

  2. Aspden, J.M., Vanneste, J.: Elliptical instability of a rapidly rotating, strongly stratified fluid. Phys. Fluids (2009). Submitted

    Google Scholar 

  3. Badudin, S.I., Shrira, V.I.: On the irreversibility of internal waves dynamics due to wave trapping by mean flow inhomogeneities. part 1. local analysis. J. Fluid Mech. 251, 221–253 (1993)

    Google Scholar 

  4. Bühler, O., McIntyre, M.E.: Wave capture and wave–vortex duality. J. Fluid Mech. 534, 67–95 (2005)

    Article  Google Scholar 

  5. Falkovich, G., Gawędzki, K., Vergassola, M.: Particles and fields in fluid turbulence. Rev. Modern Phys. 73(4), 913–975 (2001)

    Article  Google Scholar 

  6. Figotin, A., Pastur, L.: Spectra of Random and Almost-Periodic Operators. Springer (1992)

    Google Scholar 

  7. Friedlander, S.J., Lipton-Lifschitz, A.: Localized instabilities in fluids. In: S. Friedlander, D. Serre (eds.) Handbook of Mathematical Fluid Dynamics, vol. II, pp. 289–353. Elsevier Science (2003)

    Chapter  Google Scholar 

  8. Guimbard, D., Leblanc, S.: Local stability of the Abrashkin–Yakubovich family of vortices. J. Fluid Mech. 567, 91–110 (2006)

    Article  Google Scholar 

  9. Haynes, P.H., Anglade, J.: The vertical-scale cascade in atmospheric tracers due to large-scale differential advection. J. Atmos. Sci. 54, 1121–1136 (1997)

    Article  Google Scholar 

  10. Kerswell, R.R.: Elliptical instability. Ann. Rev. Fluid Mech. 34, 83–113 (2002)

    Article  Google Scholar 

  11. Kraichnan, R.H.: Convection of a passive scalar by a quasi-uniform random straining field. J. Fluid Mech. 64, 737–762 (1974)

    Article  Google Scholar 

  12. McWilliams, J.C., Yavneh, I.: Fluctuation growth and instability associated with a singularity of the balance equations. Phys. Fluids 10, 2587–2596 (1998)

    Article  Google Scholar 

  13. Miyazaki, T.: Elliptical instability in a stably stratified rotating fluid. Phys. Fluids A 5, 2702–2709 (1993)

    Article  Google Scholar 

  14. Nazarenko, S., West, R.J., Zaboronski, O.: Fourier space intermittency of the small-scale turbulent dynamo. Phys. Rev. E 68, 026311 (2003)

    Article  Google Scholar 

  15. Ngan, K., Straub, D.N., Bartello, P.: Three-dimensionalization of freely-decaying two-dimensional turbulence. Phys. Fluids 16, 2918–2932 (2004)

    Article  Google Scholar 

  16. Ólafsdóttir, E.I., Olde Daalhuis, A.B., Vanneste, J.: Inertia-gravity-wave radiation by a sheared vortex. J. Fluid Mech. 596, 169–189 (2008)

    Article  Google Scholar 

  17. Plougonven, R., Snyder, C.: Gravity waves excited by jets: propagation versus generation. Geophys. Res. Lett. 32, L18802 (2005)

    Article  Google Scholar 

  18. Snyder, C., Muraki, D., Plougonven, R., Zhang, F.: Inertia-gravity waves generated within a dipole vortex. J. Atmos. Sci. 64, 4417–4431 (2007)

    Article  Google Scholar 

  19. Straub, D.N.: Instability of 2D flows to hydrostatic 3D perturbations. J. Atmos. Sci. 60, 79–87 (2003)

    Article  Google Scholar 

  20. Vanneste, J.: Inertia-gravity-wave generation by balanced motion: revisiting the Lorenz-Krishnamurthy model. J. Atmos. Sci. 61, 224–234 (2004)

    Article  Google Scholar 

  21. Vanneste, J.: Exponential smallness of inertia-gravity-wave generation at small Rossby number. J. Atmos. Sci. 65, 1622–1637 (2008)

    Article  Google Scholar 

  22. Vanneste, J., Yavneh, I.: Exponentially small inertia-gravity waves and the breakdown of quasi-geostrophic balance. J. Atmos. Sci. 61, 211–223 (2004)

    Article  Google Scholar 

  23. Viúdez, A.: Spiral patterns of inertia-gravity waves in geophysical flows. J. Fluid Mech. 562, 73–82 (2006)

    Article  Google Scholar 

  24. Viúdez, A.: The origin of the stationary frontal wave packet spontaneously generated in rotating stratified vortex dipoles. J. Fluid Mech. 593, 359–383 (2007)

    Article  Google Scholar 

  25. Warn, T., Bokhove, O., Shepherd, T.G., Vallis, G.K.: Rossby number expansions, slaving principles, and balance dynamics. Quart. J. R. Met. Soc. 121, 723–739 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Aspden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Aspden, J.M., Vanneste, J. (2010). Inertia-gravity-wave generation: a geometric-optics approach. In: Dritschel, D. (eds) IUTAM Symposium on Turbulence in the Atmosphere and Oceans. IUTAM Bookseries, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0360-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0360-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0359-9

  • Online ISBN: 978-94-007-0360-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics