Advertisement

Neutral Winds and Densities at the Bottomside of the F Layer from Primary and Secondary Gravity Waves from Deep Convection

  • Sharon L. VadasEmail author
  • Han-Li Liu
Chapter
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)

Abstract

We model the primary gravity waves (GWs) excited by overshooting convective plumes in a \(20^{\circ}\times 20^{\circ}\) region in central Brazil for 6 h during the evening on 01 October, 2005. We ray trace these GWs into the thermosphere. At \(z=250\) km (near the bottomside of the F layer), the surviving GWs have horizontal wavelengths of \(\lambda_{\textrm{H}}\sim 200{-}300\) km, horizontal velocity amplitudes of \(u',v'\le15\, \textrm{m/s}\), and neutral density perturbations of \(\rho'/\,\overline{\rho} \le2\)%. We compute the thermospheric body forces, and input them into the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM). These forces create a “mean” eastward wind perturbation at \(z\sim150\) km of \(200{-}340\; \textrm{m/s}\) which lasts for ∼3 h. These forces also excite large-scale secondary GWs in all directions for at least 3 h with horizontal wavelengths of \(\lambda_{\textrm{H}}\sim4000{-}5000\) km, horizontal phase speeds of \(c_{\textrm{H}}\sim500{-}600\;\textrm{m/s}\), and density perturbations of 5–15% at \(z=250\) km. Prior to and after sunset, the wind perturbations are eastward with \(u'\sim75{-}150\;\textrm{m/s}\) at \(z=250\) km. This occurs over the convective region, where the winds from 2 large vortices (created by the forces) converge. In other areas, the winds are west, south, or northward. It is likely that these forces (and the GWs they excite) significantly affect the F region dynamo and the seeding of equatorial plasma bubbles (EPBs).

Keywords

Body Force Deep Convection Density Perturbation Convective Available Potential Energy Neutral Wind 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

SLV would like to thank Pete Stamus for the convective plume/cluster parameters, Fernando Sao Sabbas for the GOES-12 satellite images, and Ben Foster for implementing the body forces into the TIME-GCM. SLV was supported by NASA contract NNH07CC81C. HLL was supported in part by NASA contract NNH07CC81C. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

References

  1. Abdu MA, Batista IS, Walker GO, Sobral JHA, Trivedi NB, de Paula ER (1995) Equatorial ionospheric electric fields during magnetospheric disturbances: local time/longitude dependences from recent EITS campaigns. J Atmos Solar-Terr Phys 57:1065–1083CrossRefGoogle Scholar
  2. Alexander MJ, Holton JR, Durran DR (1995) The gravity wave response above deep convection in a squall line simulation. J Atmos Sci 52:2212–2226CrossRefGoogle Scholar
  3. Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. Academic, Orlando, FLGoogle Scholar
  4. Beres JH (2004) Gravity wave generation by a three-dimensional thermal forcing. J Atmos Sci 61:1805–1815CrossRefGoogle Scholar
  5. Crowley, G, Jones TB, Dudeney JR (1987) Comparison of short period TID morphologies in Antarctica during geomagnetically quiet and active intervals. J Atmos Terr Phys 49:1155–1162CrossRefGoogle Scholar
  6. Dewan EM, Picard RH, ONeil RR, Gardiner HA, Gibson J, Mill JD, Richards E, Kendra M, Gallery WO (1998) MSX satellite observations of thunderstorm-generated gravity waves in mid-wave infrared images of the upper stratosphere. Geophys Res Lett 25 939–942CrossRefGoogle Scholar
  7. Djuth FT, Sulzer MP, Elder JH, Wickwar VB (1997) High-resolution studies of atmosphere-ionosphere coupling at Arecibo observatory, Puerto Rico. Radio Sci 32:2321–2344CrossRefGoogle Scholar
  8. Djuth FT, Sulzer MP, Gonzales SA, Mathews JD, Elder JH, Walterscheid RL (2004) A continuum of gravity waves in the Arecibo thermosphere? Geophys Res Lett 31. doi: 10.1029/2003GL019376Google Scholar
  9. Fritts DC, Vadas SL (2008) Gravity wave penetration into the thermosphere: Sensitivity to solar cycle variations and mean winds. Ann Geophys 26:3841–3861CrossRefGoogle Scholar
  10. Fritts DC, Vadas SL, Riggin DM, Abdu MA, Batista IS, Takahashi H, Medeiros A, Kamalabadi F, Liu H-L, Fejer BJ, Taylor MJ (2008) Gravity wave and tidal influences on equatorial spread F based on observations during the Spread F Experiment (SpreadFEx). Ann Geophys 26:3235–3252CrossRefGoogle Scholar
  11. Georges TM (1968) HF Doppler studies of traveling ionospheric disturbances. J Atmos Terr Phys 30:735–746CrossRefGoogle Scholar
  12. Hickey MP, Cole KD (1988) A numerical model for gravity wave dissipation in the thermosphere: J Atmos Terr Phys 50:689–697CrossRefGoogle Scholar
  13. Hocke K, Schlegel K (1996) A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982–1995. Ann Geophys 14:917–940Google Scholar
  14. Holton JR, Alexander MJ (1999) Gravity waves in the mesosphere generated by tropospheric convection. Tellus 51(A–B):45–58Google Scholar
  15. Horinouchi T, Nakamura T, Kosaka J (2002) Convectively generated mesoscale gravity waves simulated throughout the middle atmosphere. Geophys Res Lett 29. doi:10.1029/2002GL016069Google Scholar
  16. Huang C-S, Kelley MC (1996a) Nonlinear evolution of equatorial spread F 2. Gravity wave seeding of the Rayleigh-Taylor instability. J Geophys Res 101(A1):293–302CrossRefGoogle Scholar
  17. Huang C-S, Kelley MC (1996b) Nonlinear evolution of equatorial spread-F. 4. Gravity waves, velocity shear, and day-to-day variability. J Geophys Res 101:24, 521–524, 532Google Scholar
  18. Hysell DL, Kelley MC, Swartz WE, Woodman RF (1990) Seeding and layering of equatorial spread F. J Geophys Res 95:17253–17260CrossRefGoogle Scholar
  19. Hysell D, Larsen M, Swenson C, Barjatya A, Wheeler T, Bullett T, Sarango M, Woodman R (2006) Rocket and radar investigation of background electrodynamics and bottom type scattering layers at the onset of equatorial spread F. Ann Geophys 24(5):1387–140CrossRefGoogle Scholar
  20. Kelley MC (1989) The Earth’s ionosphere. Academic, San Diego, CA, p 487, 130Google Scholar
  21. Kelley MC, Larsen MF, LaHoz C, McClure JP (1981) Gravity wave initiation of equatorial spread F: a case study. J Geophys Res 86:9087–9100CrossRefGoogle Scholar
  22. Lindzen RS (1981) Turbulence and stress owing to gravity wave and tidal breakdown. J Geophys Res 86:9707–9714CrossRefGoogle Scholar
  23. Makela JJ, Vadas SL, Muryanto R, Duly T, Crowley G (2010) Periodic spacing between consecutive equatorial plasma bubbles. Geophys Res Lett 37:L14103. doi:10.1029/2010GL043968Google Scholar
  24. Miller ES, Makela JJ, Groves KM, Kelley MC, Tsunoda RT (2010) Coordinated study of coherent radar backscatter and optical airglow depletions in the central Pacific. J Geophys Res 115:A06307. doi:10.1029/2009JA014946Google Scholar
  25. Ogawa, T, Igarashi K, Aikyo K, Maeno H (1987) NNSS Satellite observations of medium scale traveling ionospheric disturbances at southern high-latitudes. J Geomag Geoelectr 39:709–721Google Scholar
  26. Oliver WL, Otsuka Y, Sato M, Takami T, Fukao S (1997) A climatology of F region gravity wave propagation over the middle and upper atmosphere radar. J Geophys Res 102:14,499–14,512Google Scholar
  27. Pfister L, Chan KR, Bui TP, Bowen S, Legg M, Gary B, Kelly K, Proffitt M, Starr W (1993) Gravity waves generated by a tropical cyclone during the STEP tropical field program: a case study. J Geophys Res 98:8611–8638CrossRefGoogle Scholar
  28. Richmond AD (1978) Gravity wave generation, propagation, and dissipation in the thermosphere. J Geophys Res 83:4131–4145CrossRefGoogle Scholar
  29. Rishbeth H (1971) Polarization fields produced by winds in the equatorial F region. Planet Space Sci 19:357–369CrossRefGoogle Scholar
  30. Rottger J (1973) Wave-like structures of large-scale equatorial spread-F irregularities. J Atmos Terr Phys 35(6):1195–1206CrossRefGoogle Scholar
  31. Salby ML, Garcia RR (1987) Transient response to localized episodic heating in the tropics. Part 1. Excitation and short-time near-field behavior. J Atmos Sci 44:458–497CrossRefGoogle Scholar
  32. Sentman DD, Wescott EM, Picard RH, Winick JR, Stenbaek-Nielsen HC, Dewan EM, Moudry DR, Sao Sabbas FT, Heavner MJ, Morrill J (2003) Simultaneous observations of mesospheric gravity waves and sprites generated by a mid western thunderstorm. J Atmos Solar-Terr Phys 65:537–550CrossRefGoogle Scholar
  33. Smith SA, Fritts DC, VanZandt TE (1987) Evidence for a saturated spectrum of atmospheric gravity waves. J Atmos Sci 44:1404–1410CrossRefGoogle Scholar
  34. Stull RB (1976) Internal gravity waves generated by penetrative convection. J Atmos Sci 33:1279–1286CrossRefGoogle Scholar
  35. Suzuki S, Shiokawa K, Otsuka Y, Ogawa T, Nakamura K, Nakamura T (2007) A concentric gravity wave structure in the mesospheric airglow images. J Geophys Res 112:D02102. doi:10.1029/2005JD006558Google Scholar
  36. Takahashi H, Taylor MJ, Pautet P-D, Medeiros AF, Gobbi D, Wrasse CM, Fechine J, Abdu MA, Batista IS, Paula E, Sobral JHA, Arruda D, Vadas SL, Sabbas FS, Fritts DC (2009) Simultaneous observation of ionospheric plasma bubbles and mesospheric gravity waves during the SpreadFEx Campaign. Ann Geophys 27:1477–1487CrossRefGoogle Scholar
  37. Taylor MJ, Hapgood MA (1988) Identification of a thunderstorm as a source of short period gravity waves in the upper atmospheric nightglow emissions. Planet Space Sci 36:975–985Google Scholar
  38. Tsunoda RT, Bubenik DM, Thampi SV, Yamamoto M (2010) On large-scale wave structure and equatorial spread F without a post-sunset rise of the F layer. Geophys Res Lett 37:L07105. doi:10.1029/2009GL042357CrossRefGoogle Scholar
  39. Tsunoda RT, White BR (1981) On the generation and growth of equatorial backscatter plumes: 1. Wave structure in the bottom side F layer. J Geophys Res 86:3610–3616CrossRefGoogle Scholar
  40. Vadas SL (2007) Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. J Geophys Res 112:A06305. doi:10.1029/2006JA011845Google Scholar
  41. Vadas SL (2010a) Compressible f-plane solutions to local body forces and heatings; Part I: Initial value and forced/heated solutions, and polarization relations. J Atmos Sci (submitted)Google Scholar
  42. Vadas SL (2010b) Compressible f-plane solutions to local body forces and heatings; Part II: gravity wave, acoustic wave, and mean responses. J Atmos Sci (submitted)Google Scholar
  43. Vadas SL, Crowley G (2010) Sources of the traveling ionospheric disturbances observed by the ionospheric TIDDBIT sounder near Wallops Island on October 30, 2007. J Geophys Res 115:A07324. doi:10.1029/2009JA015053Google Scholar
  44. Vadas SL, Fritts DC (2005) Thermospheric responses to gravity waves: influences of increasing viscosity and thermal diffusivity. J Geophys Res 110:D15103. doi:10.1029/2004JD005574CrossRefGoogle Scholar
  45. Vadas SL, Fritts DC (2006) Influence of solar variability on gravity wave structure and dissipation in the thermosphere from tropospheric convection. J Geophys Res 111:A10S12. doi:10.1029/2005JA011510CrossRefGoogle Scholar
  46. Vadas SL, Fritts DC (2009) Reconstruction of the gravity wave field from convective plumes via ray tracing. Ann Geophys 27:147–177CrossRefGoogle Scholar
  47. Vadas SL, Fritts DC, Alexander MJ (2003) Mechanism for the generation of secondary waves in wave breaking regions. J Atmos Sci 60:194–214CrossRefGoogle Scholar
  48. Vadas SL, Liu H-L (2009) The generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively-generated gravity waves. J Geophys Res 114:A10310. doi:10.1029/2009JA014108CrossRefGoogle Scholar
  49. Vadas SL, Taylor MJ, Pautet P-D, Stamus P, Fritts DC, Liu H-L, Sao Sabbas FT, Rampinelli VT, Batista P, Takahashi H (2009) Convection: the likely source of the mediumscale gravity waves observed in the OH airglow layer near Brasilia, Brazil, during the Spread-FEx campaign. Ann Geophys 27:231–259Google Scholar
  50. Waldock JA, Jones TB (1986) HF Doppler observations of medium-scale travelling ionospheric disturbances at mid-latitudes. J Atmos Terr Phys 48:245–260CrossRefGoogle Scholar
  51. Walterscheid RL, Schubert G, Brinkman DG (2001) Small-scale gravity waves in the upper mesosphere and lower thermosphere generated by deep tropical convection. J Geophys Res 106(D23):31,825–31,832Google Scholar
  52. Yiğit E, Aylward AD, Medvedev AS (2008) Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study. J Geophys Res 113:D19106. doi:10.1029/2008JD010135CrossRefGoogle Scholar
  53. Yiğit E, Medvedev AS, Aylward AD, Hartogh P, Harris MJ (2009) Modeling the effects of gravity wave momentum deposition on the general circulation above the turbopause. J Geoph Res 114:D07101. doi:10.1029/2008JD011132CrossRefGoogle Scholar
  54. Yue J, Vadas SL, She C-Y, Nakamura T, Reising S, Liu H-Li, Stamus P, Krueger D, Lyons W, Li T (2009) Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado. J Geophys Res 114:D06104. doi:10.1029/2008JD011244CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Colorado Research Associates DivisionNorthWest Research AssociatesBoulderUSA
  2. 2.National Center for Atmospheric Research (HAO/NCAR)BoulderUSA

Personalised recommendations