Advertisement

Gravity Wave Influences in the Thermosphere and Ionosphere: Observations and Recent Modeling

  • David C. FrittsEmail author
  • Thomas S. Lund
Chapter
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)

Abstract

Observational and theoretical studies have suggested gravity wave propagation and influences in the thermosphere and ionosphere for half a century. Gravity waves contribute, or are believed to contribute, to a variety of neutral and electrodynamic phenomena ranging from vertical coupling, energy and momentum transport and deposition, neutral perturbations and accelerations, traveling ionospheric disturbances, ionospheric irregularities, and plasma instabilities under quiet conditions to strong coupling from high to low latitudes and accompanying electrodynamics under storm-time conditions. Our goals here are to briefly review what has been learned to date, to illustrate some of the more recent results indicative of gravity wave effects, and to identify some aspects of neutral dynamics not previously considered that we expect may also have significant influences on neutral dynamics and electrodynamics in the thermosphere and ionosphere.

Keywords

Wave Packet Momentum Flux Phase Speed Deep Convection Plasma Bubble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Preparation of this paper was supported by AFOSR contract FA9550-09-C-0197, NASA contract NNH09CF40C, and NSF grant ATM-0836407. We also acknowledge the DoD High Performance Computing Modernization Office for computational resources employed for the simulations described.

References

  1. Abdu MA, Kherani EA, Batista IS, de Paula ER, Fritts DC, Sobral JHA (2009) Gravity wave initiation of equatorial spread F/plasma bubble irregularities based on observational data from the SpreadFEx campaign. Ann Geophys (SpreadFEx special issue) 27:2607–2622Google Scholar
  2. Bretherton FP (1969) Momentum transport by gravity waves. Quart J R Meteorol Soc 404:213–243CrossRefGoogle Scholar
  3. Chimonas G, Hauser HM, Bennett RD (1996) The excitation of ducted modes by passing internal waves. Phys Fluids (8):1486. doi:10.1063/1.868925Google Scholar
  4. Danilov AD (1984) Direct and indirect estimates of turbulence around the turbopause. Adv Space Res 4(4):67–78CrossRefGoogle Scholar
  5. Djuth FT, Sulzer MP, Elder JH, Wickwar VB (1997) High-resolution studies of atmosphere-ionosphere coupling at Arecibo Observatory, Puerto Rico. Radio Sci 32:2321–2344CrossRefGoogle Scholar
  6. Djuth FT, Sulzer MP, Gonzales SA, Mathews JD, Elder JH, Walterscheid RL (2004) A continuum of gravity waves in the Arecibo thermosphere? Geophys Res Lett 31. doi:10.1029/2003GL019376Google Scholar
  7. Drazin, PG (1977) On the instability of an internal gravity wave. Proc R Soc Lond 356:411–432CrossRefGoogle Scholar
  8. Earle GD, Musumba AM, Vadas SL (2008) Satellite-based measurements of gravity wave-induced midlatitude plasma density perturbations. J Geophys Res 113:A03303. doi:10.1029/2007JA012766CrossRefGoogle Scholar
  9. Einaudi F, Hines CO (1970) WKB approximation in application to acoustic-gravity waves. Can J Phys 48(12):1458–1471Google Scholar
  10. Fritts DC, Abdu MA, Batista BR, Batista IS, Batista PP, Buriti R, Clemesha BR, Dautermann T, de Paula E, Fechine BJ, Fejer B, Gobbi D, Haase J, Kamalabadi F, Kherani EA, Laughman B, Lima PP, Liu H-L, Medeiros A, Pautet D, Sao Sabbas F, Sobral JHA, Stamus P, Takahashi H, Taylor MJ, Vadas SL, Vargas F, Wrasse C (2009a) Overview and summary of the Spread F Experiment (SpreadFEx). Ann Geophys 27:2141–2155CrossRefGoogle Scholar
  11. Fritts DC, Alexander MJ (2003) Gravity dynamics and effects in the middle atmosphere. Rev Geophys 41. doi:10.1029/2001RG000106Google Scholar
  12. Fritts DC, Arendt S, Andreassen O (1998) Vorticity dynamics in a breaking internal gravity wave, 2. Vortex interactions and transition to turbulence. J Fluid Mech 367:47–65CrossRefGoogle Scholar
  13. Fritts DC, Dunkerton TJ (1984) A quasi-linear study of gravity wave saturation and self acceleration. J Atmos Sci 41:3272–3289CrossRefGoogle Scholar
  14. Fritts DC, Garten JF, Andreassen O (1996) Wave breaking and transition to turbulence in stratified shear flows. J Atmos Sci 53:1057–1085CrossRefGoogle Scholar
  15. Fritts DC, Isler JR, Andreassen O (1994) Gravity wave breaking in two and three dimensions, 2. Three-dimensional evolution and instability structure. J Geophys Res 99:8109–8123CrossRefGoogle Scholar
  16. Fritts DC, Vadas SL (2008) Gravity wave penetration into the thermosphere: sensitivity to solar cycle variations and mean winds. Ann Geophys (SpreadFEx special issue) 26:3841–3861Google Scholar
  17. Fritts DC, Vadas SL, Riggin DM, Abdu MA, Batista IS, Takahashi H, Medeiros A, Kamalabadi F, Liu HL, Fejer BJ, Taylor MJ (2008) Gravity wave and tidal influences on equatorial spread F based on observations during the Spread F Experiment (SpreadFEx). Ann Geophys (SpreadFEx special issue) 26:3235–3252Google Scholar
  18. Fritts DC, Vadas SA, Yamada Y (2002) An estimate of strong local gravity wave body forcing based on OH airglow and meteor radar observations. Geophys Res Lett 29(10). doi:10.1029/2001GL013753Google Scholar
  19. Fritts DC, Wang L, Werne J, Lund T, Wan K (2009b) Gravity wave instability dynamics at high Reynolds numbers, 1: wave field evolution at large amplitudes and high frequencies. J Atmos Sci 66:1126–1148. doi:10.1175/2008JAS2726.1CrossRefGoogle Scholar
  20. Fritts DC, Wang L, Werne J, Lund T, Wan K (2009c) Gravity wave instability dynamics at high Reynolds numbers, 2: turbulence evolution, structure, and anisotropy. J Atmos Sci 66:1149–1171. doi:10.1175/2008JAS2727.1CrossRefGoogle Scholar
  21. Fuller-Rowell TJ, Codrescu MV, Moffett RJ, Quegan S (1994) Response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res 99(A3):3893–3914CrossRefGoogle Scholar
  22. Fuller-Rowell TJ, Millward GH, Richmond AD, Codrescu MV (2002) Storm-timechanges in the upper atmosphere at low latitudes. J Atmos Solar-Terr Phys 65:1383–1391CrossRefGoogle Scholar
  23. Grimshaw RHJ (1977) The modulation of an internal gravity wave packet and the resonance with the mean motion. Stud App Math 56:241–266Google Scholar
  24. Hall CM, Manson AH, Meek CE (1998), Seasonal variation of the turbopause: One year of turbulence investigation at 69°N by the joint University of Tromsø/University of Saskatchewan MF radar. J Geophys Res 103(D22):28,769–28,773CrossRefGoogle Scholar
  25. Hasselmann K (1967) A criterion for non-linear wave stability. J Fluid Mech 30:737–739CrossRefGoogle Scholar
  26. Hickey MP, Cole KD (1987) A quartic dispersion relation for internal gravity waves in the thermosphere. J Atmos Solar-Terr Phys 49:889–899CrossRefGoogle Scholar
  27. Hickey MP, Cole KD (1988) A numerical model for gravity wave dissipation in the atmosphere. J Atmos Solar-Terr Phys 50(8):689–697CrossRefGoogle Scholar
  28. Hines CO (1960) Internal gravity waves at ionospheric heights. Can J Phys 38(11):1441–1481Google Scholar
  29. Hines CO (1991) The saturation of gravity waves in the middle atmosphere. Part III: formation of the turbopause and of turbulent layers beneath it. J Atmos Sci 48(11):1380–1385CrossRefGoogle Scholar
  30. Hocke K, Schlegel K (1996) A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982–1995. Ann Geophys 14:917–940Google Scholar
  31. Hocke K, Tsuda T (2001) Gravity waves and ionospheric irregularities over tropical convection zones observed by GPS/MET radio occultation. Geophys Res Lett 28(14):2815–2818CrossRefGoogle Scholar
  32. Horinouchi T (2004) Simulated breaking of convectively generated mesoscale gravity waves and airglow modulation. J Atmos Solar-Terr Phys 66(6–9):755–767CrossRefGoogle Scholar
  33. Horinouchi T, Nakamura T, Kosaka J (2007) Convectively generated mesoscale gravity waves simulated throughout the middle atmosphere. Geophys Res Lett 29(21). doi:10.1029/2002GL016069Google Scholar
  34. Huang CS, Kelley MC (1996) Nonlinear evolution of equatorial spread-F. 2. Gravity wave seeding of Rayleigh-Taylor instability J Geophys Res 101:293Google Scholar
  35. Huang CS, Kelley MC, Hysell DL (1993) Nonlinear Rayleigh-Taylor instabilities, atmospheric gravity waves, and equatorial spread-F. J Geophys Res 98:15,631Google Scholar
  36. Huang C, Zhang S, Yi F (2002) A numerical study of the nonlinear propagation of gravity-wave packets excited by temperature disturbance. Chi J Space Sci 22:330–338Google Scholar
  37. Huang C, Zhang S, Yi F (2009) Gravity wave excitation through resonant interaction in a compressible atmosphere. Geophys Res Lett 36(1):L01803. doi:10.1029/2008GL035575CrossRefGoogle Scholar
  38. Hysell DL, Kelley MC, Swartz WE, Woodman RF (1990) Seeding and layering of equatorial spread-F. J Geophys Res 95:17,253CrossRefGoogle Scholar
  39. Innis JL, Conde M (2002) Characterization of acoustic–gravity waves in the upper thermosphere using dynamics explorer 2 wind and temperature spectrometer (WATS) and neutral atmosphere composition spectrometer (NACS) data. J Geophys Res 107(A12):1418. doi:10.1029/2002JA009370CrossRefGoogle Scholar
  40. Innis JL, Greet PA, Dyson PL (2001) Evidence for thermospheric gravity waves in the southern polar cap from ground-based vertical velocity and photometric observations. Ann Geophys 19:533–543CrossRefGoogle Scholar
  41. Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94CrossRefGoogle Scholar
  42. Kamalabadi F et al (2009) Electron densities in the lower thermosphere from GUVI 1356 tomographic inversions in support of SpreadFEx. Ann Geophys (SpreadFEx special issue) 27:2439–2448Google Scholar
  43. Kherani EA, Abdu MA, de Paula ER, Fritts DC, Sobral JHA, de Meneses FC Jr (2009) The impact of gravity waves rising from convection in the lower atmosphere on the generation and nonlinear evolution of equatorial plasma bubbles. Ann Geophys (SpreadFEx special issue) 27:511–523Google Scholar
  44. Kirchengast G, Hocke K, Schlegel K (1995), Gravity waves determined by modeling of traveling ionospheric disturbances in incoherent scatter radar measurements. Radio Sci 30(5):1551–1567CrossRefGoogle Scholar
  45. Klostermeyer J (1969) Gravity waves in the F-region. J Atmos Solar-Terr Phys 31(1):25–45. doi:10.1016/0021-9169(69)90079-8CrossRefGoogle Scholar
  46. Klostermeyer J (1972) Numerical calculation of gravity wave propagation in a realistic thermosphere. J Atmos Solar-Terr Phys 34(5):765–774. doi:10.1016/0021-9169(72)90109-2CrossRefGoogle Scholar
  47. Klostermeyer J (1978) Nonlinear investigation of the spatial resonance effect in the nighttime equatorial F region. J Geophys Res 83:3753–3760CrossRefGoogle Scholar
  48. Klostermeyer J (1991) Two-and three-dimensional parametric instabilities in finite amplitude internal gravity waves. Geophys Astrophys Fluid Dyn 61:1–25CrossRefGoogle Scholar
  49. Kudeki E, Akgiray A, Milla M, Chau JL, Hysell DL (2007) Equatorial spread-F initiation: post-sunset vortex, thermospheric winds, gravity waves. J Atmos Solar-Terr Phys 69:2416–2427CrossRefGoogle Scholar
  50. Lane TP, Reeder MJ, Clark TL (2001) Numerical modeling of gravity wave generation by deep tropical convection. J Atmos Sci 58(10):1249–1274CrossRefGoogle Scholar
  51. Lighthill MJ (1978) Waves in fluids. Cambridge University Press, CambridgeGoogle Scholar
  52. Livneh DJ, Seker I, Djuth FT, Mathews JD (2007) Continuous quasiperiodic thermospheric waves over Arecibo. J Geophys Res 112:A07313. doi:10.1029/2006JA012225CrossRefGoogle Scholar
  53. Lombard, PN, Riley JJ (1996) On the breakdown into turbulence of propagating internal waves. Dyn Atmos Ocean 23:345–355CrossRefGoogle Scholar
  54. Lund T, Fritts DC (2011) Gravity wave breaking and turbulence generation in the thermosphere. Geophys Res Lett (to be submitted)Google Scholar
  55. Luo Z, Fritts DC (1993) Gravity wave excitation by geostrophic adjustment of the jet stream, part ii: three-dimensional forcing. J Atmos Sci 50:104–115CrossRefGoogle Scholar
  56. Ma SY, Schlegel K, Xu JS (1998) Case studies of the propagation characteristics of auroral TIDS with EISCAT CP2 data using maximum entropy cross-spectral analysis. Ann Geophys 16(2):161–167. doi:10.1007/s00585-998-0161-3CrossRefGoogle Scholar
  57. Marks CJ, Eckermann SD (1995) A three-dimensional nonhydrostatic ray-tracing model for gravity waves: formulation and preliminary results for the middle atmosphere. J Atmos Sci 52(11):1959–1984CrossRefGoogle Scholar
  58. Mayr HG, Harris I, Herrero FA, Spencer NW, Varosil F, Pesnell WD (1990) Thermospheric gravity waves: observations and interpretation using the transfer function model (TFM). Space Sci Revs 54:297–375. doi:10.1007/BF00177800CrossRefGoogle Scholar
  59. McClure JP, Hanson WB, Hoffman JF (1977) Plasma bubble and irregularities in the equatorial ionosphere. J Geophys Res 82:2650CrossRefGoogle Scholar
  60. McClure JP, Singh S, Bamgboye DK, Johnson FS, Kil H (1998) Occurrence of equatorial F region irregularities: evidence for tropospheric seeding. J Geophys Res 103:29,119–29,135CrossRefGoogle Scholar
  61. McIntyre ME (1973) Mean motions and impulse of a guided internal gravity wave packet. J Fluid Mech 60:801–811CrossRefGoogle Scholar
  62. Mendillo M, Baumgardner J, Nottingham D, Aarons J, Reinisch B, Scali J, Kelley M (1997) Investigation of thermospheric-ionospheric dynamics with 6300-Å images from the Arecibo observatory. J Geophys Res 102(A4):7331–7343CrossRefGoogle Scholar
  63. Mied RR (1976) The occurrence of parametric instabilities in finite-amplitude internal gravity waves. J Fluid Mech 78:763–784CrossRefGoogle Scholar
  64. Nicolls MJ, Kelley MC, Coster AJ, Gonzalez SA, Makela JJ (2004) Imaging the structure of a large-scale TID using ISR and TEC data. Geophys Res Lett 31:L09812. doi:10.1029/2004GL019797CrossRefGoogle Scholar
  65. Oliver WL, Otsuka Y, Sato M, Takami T, Fukao S (1997) A climatology of F region gravity wave propagation over the middle and upper atmosphere radar. J Geophys Res 102:14,499–14,512Google Scholar
  66. Ogawa T, Balan N, Otsuka Y, Shiokawa K, Ihara C, Shimomai T, Saito A (2002) Obervations and modeling of 630 nm airglow and total electron content associated with traveling ionospheric disturbances over Shigaraki, Japan. Earth Planets Space 54:45–56Google Scholar
  67. Sentman DD, Wescott EM, Picard RH, Winick JR, Stenbaek-Nielson HC, Dewan EM, Moudry DR, São Sabbas FT, Heavner MJ (2003) Simultaneous observation of mesospheric gravity waves and sprites generated by a Midwestern thunderstorm. J Atmos Solar-Terr Phys 65:537–550CrossRefGoogle Scholar
  68. Shiokawa K et al (2002) A large-scale traveling ionospheric disturbance during the magnetic storm of 15 September 1999. J Geophys Res 107(A6):1088. doi:10.1029/2001JA000245CrossRefGoogle Scholar
  69. Sidi C, Teitelbaum H (1978) Thin shear turbulent layers within the lower thermosphere induced by non-linear interaction between tides and gravity waves. J Atmos Solar-Terr Phys 40(5):529–540. doi:10.1016/0021-9169(78)90090-9CrossRefGoogle Scholar
  70. Snively JB, Pasko VP (2008) Excitation of ducted gravity waves in the lower thermosphere by tropospheric sources. J Geophys Res 113:A06303. doi:10.1029/2007JA012693CrossRefGoogle Scholar
  71. Sonmor LJ, Klaassen GP (1997) Toward a unified theory of gravity wave stability. J Atmos Sci 54(22):2655–2680CrossRefGoogle Scholar
  72. Sutherland BR (1999) Propagation and reflection of large amplitude internal gravity waves. Phys Fluids 11:1081–1090CrossRefGoogle Scholar
  73. Sutherland BR (2000) Internal wave reflection in uniform shear. Quart J R Meteorol Soc 126(570):3255–3286CrossRefGoogle Scholar
  74. Sutherland BR (2001) Finite-amplitude internal wavepacket dispersion and breaking. J Fluid Mech 429:343–380CrossRefGoogle Scholar
  75. Sutherland BR (2006) Internal wave instability: wave-wave versus wave-induced mean flow interactions. Phys Fluids 18:074107. doi:10.1063/1.2219102CrossRefGoogle Scholar
  76. Vadas SL (2007) Horizontal and vertical propagation, and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. J Geophys Res 112:A06305. doi:10.1029/2006JA011845CrossRefGoogle Scholar
  77. Vadas SL, Fritts DC (2001) Gravity wave radiation and mean responses to local body forces in the atmosphere. J Atmos Sci 58:2249–2279CrossRefGoogle Scholar
  78. Vadas SL, Fritts DC (2002) The importance of spatial variability in the generation of secondary gravity waves from local body forces. Geophys Res Lett 29(20). doi: 10.1029/2002GL015574Google Scholar
  79. Vadas SL, Fritts DC (2004) Thermospheric responses to gravity waves arising from mesoscale convective complexes. J Atmos Solar-Terr Phys 66:781–804CrossRefGoogle Scholar
  80. Vadas SL, Fritts DC (2005) Thermospheric responses to gravity waves: influences of increasing viscosity and thermal diffusivity. J Geophys Res 110:D15103. doi:10.1029/2004JD005574CrossRefGoogle Scholar
  81. Vadas SL, Fritts DC (2006) The influence of increasing temperature and solar variability on gravity wave structure and dissipation in the thermosphere. J Geophys Res (TIMED special issue) 111:A10812. doi:10.1029/2005JA011510Google Scholar
  82. Vadas SL, Fritts DC (2009) Reconstruction of the gravity wave field from convective plumes via ray tracing. Ann Geophys (SpreadFEx special issue) 27(1):147–177Google Scholar
  83. Vadas SL, Liu H-L (2009) Generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively generated gravity waves. J Geophys Res 114:A10310. doi:10.1029/2009JA014108CrossRefGoogle Scholar
  84. Vadas SL, Nicolls M (2008) Using PFISR measurements and gravity wave dissipative theory to determine the neutral, background thermospheric winds. Geophys Res Lett 35:L02105. doi:10.1029/2007GL031522CrossRefGoogle Scholar
  85. Vadas SL, Nicolls M (2009) Temporal evolution of neutral, thermospheric winds and plasma response using PFISR measurements of gravity waves. J Atmos Solar-Terr Phys 71:740–770Google Scholar
  86. Vadas SL, Taylor MJ, Pautet P-D, Stamus P, Fritts DC, Liu H-L, Sao Sabbas F, Rampinelli VT, Batista P, Takahashi H (2009) Convection: the likely source of the medium-scale gravity waves observed in the OH airglow layer near Brasilia, Brazil, during the SpreadFEx campaign. Ann Geophys (SpreadFEx special issue) 27:231–259Google Scholar
  87. Walterscheid RL, Schubert G (1990) Nonlinear evolution of an upward propagating gravity wave: overturning, convection, transience and turbulence. J Atmos Sci 47:101–125CrossRefGoogle Scholar
  88. Whitham GB (1965) A general approach to linear and nonlinear dispersive waves using a Lagrangian. J Fluid Mech 22:273–283CrossRefGoogle Scholar
  89. Whitham GB (1974) Linear and nonlinear waves. Wiley, New York, NYGoogle Scholar
  90. Yamada Y, Fukunishi H, Nakamura T, Tsuda T (2001) Breakdown of small-scale quasi-stationary gravity wave and transition to turbulence observed in OH airglow. Geophys Res Lett 28:2153–2156CrossRefGoogle Scholar
  91. Yeh KC, Liu CH (1981) The instability of atmospheric gravity waves through wave-wave interactions. J Geophys Res 86(C10):9722–9728CrossRefGoogle Scholar
  92. Yue J, Vadas SL, She C-Y, Nakamura T, Reising S, Krueger D, Liu H-Li, Stamus P, Thorsen D, Lyons W, Li T (2009) A study of OH imager observed concentric gravity waves near Fort Collins on 11 May 2004. J Geophys Res 114:D06104. doi:10.1029/2008JD011244CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Colorado Research Associates Division, NorthWest Research AssociatesBoulderUSA
  2. 2.NorthWest Research Associates/Colorado Research Associates DivisionBoulderUSA

Personalised recommendations