Advertisement

High-Latitude Gravity Wave Measurements in Noctilucent Clouds and Polar Mesospheric Clouds

  • Michael J. TaylorEmail author
  • P.-D. Pautet
  • Y. Zhao
  • C.E. Randall
  • J. Lumpe
  • S.M. Bailey
  • J. Carstens
  • K. Nielsen
  • James M. RussellIII
  • J. Stegman
Chapter
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)

Abstract

Distinct wave forms traditionally observed in Noctilucent Cloud (NLC) photographs and most recently captured in high-resolution panoramic images of Polar Mesospheric Clouds (PMC) provide an exceptionally rich resource for quantifying gravity wave activity and properties in the high-latitude summer mesopause region. Using extensive image data on PMC structures obtained by the Cloud Imaging and Particle Size (CIPS) ultraviolet instrument onboard the NASA Aeronomy of Ice in the Mesosphere (AIM) satellite, we have investigated the properties of prominent quasi-monochromatic waves imaged over the northern hemisphere polar region during summer 2007. Our two-dimensional spectral analysis has focused on the peak season, July period and over 450 events have been measured. The PMC field was found to contain a broad spectrum of gravity waves with horizontal wavelengths ranging from at least 20–400 km. The smallest scale wave events (<50 km), exhibit the highest occurrence frequency, but substantial evidence for larger-scale (>100 km) wave activity was also found. The direction of motion of the waves (both large and small-scale) deduced from their orientations (with 180° ambiguity) was predominantly zonal (with a small meridional component), and differed significantly from recent NLC Type II band measurements which were dominated by strong near poleward wave motions. Evidence was also found for a reduction in gravity wave activity over the Europe/North Atlantic sector during the July 2007 period, as compared to other longitudes. These results build significantly on an initial seasonal investigation of quasi-monochromatic events by Chandran et al. (2009), and further demonstrate the high potential of CIPS data for detailed gravity wave studies. A more comprehensive investigation of the strong spatial alignments of the wave events and their longitudinal variability is currently in progress.

Keywords

Gravity Wave Wave Event Wave Crest Latitude Range Noctilucent Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are most grateful to the NASA Small Explorer program for supporting the development of the AIM satellite mission under contract NAS5-03132 and for providing the support for this research. We would also like to acknowledge the efforts of the entire development, engineering, science and operation teams. The USU analysis of the CIPS data was supported via a sub-contract from Hampton University.

References

  1. Bailey, SM, Thomas GE, Rusch DW, Merkel AW, Jeppesen C, Carstens JN, Randall CE, McClintock WE, Russell JM III (2009) Phase functions of polar mesospheric cloud ice as observed by the CIPS instrument on the AIM satellite. J Atmos Solar-Terr Phys. doi:10.1016/j.jastp.2008.09.039Google Scholar
  2. Carbary JF, Morrison D, Romick GJ (2000) Transpolar structure of polar mesospheric clouds. J Geophys Res 105:24,763–24,769Google Scholar
  3. Carbary JF, Morrison D, Romick GJ (2003) Maps of polar mesospheric clouds. J Geophys Res 108(D8):8446. doi:10.1029/2002JD002255CrossRefGoogle Scholar
  4. Chandran A, Rusch D, Palo SE, Thomas GE, Taylor M (2009) Gravity wave observation from the cloud imaging and particle size (CIPS) experiment on the AIM spacecraft. J Atmos Solar-Terr Phys. doi:10.1016/j.jastp.2008.09.041Google Scholar
  5. Coble MR, Papen GC, Gardner CS (1998) Computing two-dimensional unambiguous horizontal wavenumber spectra from OH airglow images. IEEE Trans Geosci Remote Sens 36(2):368–382Google Scholar
  6. Dalin P, Kirkwood S, Moström A, Stebel K, Hoffmann P, Singer W (2004) A case study of gravity waves in noctilucent clouds. Ann Geophys 22:1875–1884CrossRefGoogle Scholar
  7. Deland MT, Shettle EP, Thomas GE, Olivero JJ (2006) A quarter-century of satellite polar mesospheric cloud observations. J Atmos Solar-Terr Phys 68, 9–29CrossRefGoogle Scholar
  8. Dewan EM, Picard RH, O’Neil RR, Gardiner HA, Gibson J, Mill JD, Richards E, Kendra M, Gallery WO (1998), MSX satellite observations of thunderstorm-generated gravity waves in mid-wave infrared images of the upper stratosphere. Geophys Res Lett 25:939–942. doi:10.1029/98GL00640CrossRefGoogle Scholar
  9. Drobs DP, Emmert JT, Crowley G, Picone JM, Shepherd GG, Skinner W, Hays P, Niciejewski RJ, Larsen M, She CY, Meriwether JW, Hernandez G, Jarvis MJ, Sipler DP, Tepley CA, O’Brien MS, Bowman JR, Wu Q, Murayama Y, Kawamura S, Reid IM, Vincent RA (2008) An empirical model of the Earth’s horizontal wind fields: HWM07. J Geophys Res 113:A12304. doi:10.1029/2008JA013668CrossRefGoogle Scholar
  10. Evans WFJ, Laframboise LR, Sine KR, Wiens RH, Shepherd GG (1995) Observation of polar mesospheric clouds in summer, 1993 by the WINDII instrument on UARS. Geophys Res Lett 22:793–2796Google Scholar
  11. Fogle B, Haurwitz B (1969) Wave forms in noctilucent clouds. Deep-Sea Res 16:85–95Google Scholar
  12. Fritts DC, Isler JR, Thomas GE, Andreassen Ø (1993) Wave breaking signatures in noctilucent clouds. Geophys Res Lett 20:2039–2042CrossRefGoogle Scholar
  13. Gadsden, M. (1981) The silver-blue cloudlets again: nucleation and growth of ice in the mesosphere. Planet Space Sci 29:1079–1087CrossRefGoogle Scholar
  14. Gadsden M, Parviainen P (1995) Observing noctilucent clouds. International Association of Geomagnetism & Aeronomy, pp 5Google Scholar
  15. Gadsden M, Schröder W (1989) Noctilucent clouds. Springer, BerlinGoogle Scholar
  16. Garcia FJ, Taylor MJ, Kelley MC (1997) Two-dimensional spectral analysis of mesospheric airglow image data. Appl Opt 36:7374–7385CrossRefGoogle Scholar
  17. Gerding M, Hoffner J, Rauthe M, Singer W, Zecha M, Lubken F-J (2007) Simultaneous observations of noctilucent clouds, mesospheric summer echoes, and temperature at a midlatitude station (54ºN). J Geophys Res 112: D12111, doi:10.1029/2006JD008135Google Scholar
  18. Grishin NI (1967) Morphologicheskie Issledovaniya i Primda Serebristikh Oblakov. In “Nabludeniya Serebristikh Oblakov”. Izdatelstvo Nauka, Moscow, pp 5–34Google Scholar
  19. Jesse O (1896) Die Ho¨he der leuchtenden nachtwolken. Astronomische Nachrichten 140:161–168CrossRefGoogle Scholar
  20. Jensen EJ, Thomas GE (1988) A growth-sedimentation model of polar mesospheric clouds: comparison with SME measurements. J Geophys Res 93:2461–2473CrossRefGoogle Scholar
  21. Leslie R (1885) Sky glows. Nature 32:245CrossRefGoogle Scholar
  22. Merkel, WA, Rusch DW, Palo SE, Russell JM III, Bailey SM (2009) Mesospheric planetary wave activity inferred from AIM-CIPS and TIMED-SABER for the northern summer 2007 PMC season. J Atmos Solar-Terr Phys. doi:10.1016/j.jasp.2006.05.01Google Scholar
  23. McClintock W, Rusch DW, Thomas GE, Merkel AW, Lankton MR, Drake VA, Bailey SM, Russell JM III (2009) The cloud imaging and particle size experiment on the aeronomy of ice in the mesosphere mission: instrument concept,  design, calibration, and on-orbit performance. J Atmos Solar-Terr Phys. doi:10.1016/j.jastp.2008.10.011Google Scholar
  24. Nakamura TA, Tsuda T, Admiranto T, Achmad AG, Suranto E (2003) Mesospheric gravity waves over a tropical convective region observed by OH airglow imaging in Indonesia. Geophys Res Lett 30(17):1882CrossRefGoogle Scholar
  25. Nicolls MJ, Heinselman CJ, Hope EA, Ranjan S, Kelley MC, Kelly JD (2007) Imaging of polar mesosphere summer echoes with the 450 MHz Poker Flat advanced modular incoherent scatter radar. Geophys Res Lett 34:L20102CrossRefGoogle Scholar
  26. Nielsen K, Taylor MJ, Hibbins RE, Jarvis MJ (2009) Climatology of short-period mesospheric gravity waves over Halley, Antarctica (76°S, 27°W). J Atmos Solar-Terr Phys 71:991–1000CrossRefGoogle Scholar
  27. Nielsen K, Taylor MJ, Pautet P-D, Fritts DC, Mitchell N, Beldon C, Williams BP, Singer W, Schmidlin FJ, Goldberg RA (2006) Propagation of short-period gravity waves at high-latitudes during the MaCWAVE winter campaign. Ann Geophys 24:1227–1243 SRef_ID:1432-0576/ag/2006- 24-1227CrossRefGoogle Scholar
  28. Pautet P-D, Stegman J, Wrasse CM, Takahashi H, Taylor MJ (2010) Analysis of gravity waves structures visible in noctilucent cloud images, global perspectives on the aeronomy of the summer mesopause region, 8th international workshop on layered phenomena in the mesopause region. J Atmos Solar-Terr Phys. doi:10.1016/j.jastp.2010.06.001Google Scholar
  29. Pautet P-D, Taylor MJ, Liu AZ, Swenson GR (2005) Climatology of short-period gravity waves observed over northern Australia during the Darwin area wave experiment (DAWEX) and their dominant source regions. J Geophys Res 110:D03S90CrossRefGoogle Scholar
  30. Rapp M, Lubken F-J (2004) Polar mesosphere summer echoes (PMSE): review of observations and current understanding. Atmos Chem Phys 4:2601–2633CrossRefGoogle Scholar
  31. Rusch DW, Thomas GE, McClintock W, Merkel AW, Bailey SM, Russell JM III, Randall CE, Jeppesen C, Callan M (2009) The cloud imaging and particle size experiment on the aeronomy of ice in the mesosphere mission: cloud morphology for the northern 2007 season. J Atmos Solar-Terr Phys. doi:10.1016/j.jastp.2008.11.005Google Scholar
  32. Russell JM III, Bailey SM, Horanyi M, Gordley LL, Rusch DW, Hervig ME, Thomas GE, Randall CE, Siskind DE, Stevens MH, Summers ME, Taylor MI, Englert CR, Espy PJ, McClintock WE, Merkel AW (2009) Aeronomy of ice in the mesosphere (AIM): overview and early science results. J Atmos Solar-Terr Phys. doi:10.1016/j.jastp.2008.08.011Google Scholar
  33. Sentman DD, Wescott EM, Picard RH, Winick JR, Stenbaek Nielsen HC, Dewan EM, Moudry DR, Sao Sabbas FT, Heavner MJ, Morrill J (2003) Simultaneous observations of mesospheric gravity waves and sprites generated by a midwesterm thunderstorm. J Atmos Terr Phys 65:537–550. doi:10.1016/S1364-6826(02)00328-0CrossRefGoogle Scholar
  34. Suzuki S, Shiokawa K, Otsuka Y, Ogawa T, Nakamura K, Nakamura T (2007) A concentric gravity wave structure in the mesospheric airglow images. J Geophys Res 112:D02102. doi:10.1029/2005JD006558CrossRefGoogle Scholar
  35. Taylor MJ, Garcia FJ (1995) A two-dimensional spectral analysis of short period gravity waves imaged in the OI (557.7 nm) and near-infrared OH nightglow emissions over Arecibo, Puerto Rico. Geophys Res Lett 22:2473–2476CrossRefGoogle Scholar
  36. Taylor MJ, Hapgood MA (1988) Identification of a thunderstorm as a source of short period gravity waves in the upper atmospheric nightglow emissions. Planet Space Sci 36:975–985. doi:10.1016/0032-0633(88)90035-9CrossRefGoogle Scholar
  37. Taylor MJ, Pendleton WR Jr, Clark S, Takahashi H, Gobbi D, Goldberg RA (1997) Image measurements of short-period gravity waves at equatorial latitudes. J Geophys Res 102(D22):26283–26299CrossRefGoogle Scholar
  38. Taylor MJ, Zhao Y, Pautet P-D, Nicolls MJ, Collins RL, Baker-Tvedtness J, Burton CD, Thurairajah B, Reimuller J, Varney RH, Heinselman CJ, Mizutani K (2009) Coordinated optical and radar image measurements of noctilucent clouds and polar mesospheric summer echoes. J f Atmos Solar-Terr Phys. doi:10.1016/j.jastp.2008.12.005Google Scholar
  39. Thomas GE (1991) Mesospheric clouds and the physics of the mesopause region. Rev Geophys 29:553–576CrossRefGoogle Scholar
  40. von Zahn U, Bremer J (1999) Simultaneous and common-volume observations of noctilucent clouds and polar mesosphere summer echoes. Geophys Res Lett 26:1521–1524CrossRefGoogle Scholar
  41. Witt G (1962) Height, structure and displacements of noctilucent clouds. Tellus 14:1–18CrossRefGoogle Scholar
  42. WMO (1970) International Noctilucent Cloud Manual, World Meteorological Organization, 250.TP.138, GenevaGoogle Scholar
  43. Yue J, Vadas SL, She C-Y, Nakamura T, Reising SC, Liu H-L, Stamus P, Krueger DA, Lyons W, Li T (2009) Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado. J Geophys Res 114:D06104. doi:10.1029/2008JD011244CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Michael J. Taylor
    • 1
    Email author
  • P.-D. Pautet
    • 1
  • Y. Zhao
    • 1
  • C.E. Randall
    • 2
  • J. Lumpe
    • 3
  • S.M. Bailey
    • 4
  • J. Carstens
    • 4
  • K. Nielsen
    • 3
  • James M. RussellIII
    • 5
  • J. Stegman
    • 6
  1. 1.Center for Atmospheric and Space ScienceUtah State UniversityLoganUSA
  2. 2.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderUSA
  3. 3.Computational Physics Inc.BoulderUSA
  4. 4.Electrical & Computer EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  5. 5.Center for Atmospheric Sciences, Hampton UniversityHamptonUSA
  6. 6.Department of MeteorologyStockholm UniversityStockholmSweden

Personalised recommendations