In Situ Measurements of Small-Scale Structures in Neutrals and Charged Aerosols

  • Boris StrelnikovEmail author
  • Markus Rapp
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)


The ECOMA sounding rocket program began in 2006 and involved the launching of six instrumented rockets for studying properties of mesospheric aerosols and related phenomena from the north-Norwegian Andøya Rocket Range (69°N; 16°E). Among other things, the ECOMA payloads carried the CONE instrument and the ECOMA particle detector to measure densities of neutral air and charged aerosols, respectively. These measurements were done with very high spatial resolution and precision which allows us to study small-scale structures in those species at spatial scales down to one meter. While small-scale fluctuations in the plasma may originate from either electrodynamics or neutral dynamical processes, neutral density fluctuations are a unique tracer for turbulent velocity fluctuations. Such measurements can be used to derive the spectral content of the turbulence field from which, in turn, the turbulent energy dissipation rate can be reliably derived. Accompanying ground based measurements by VHF radar that, in particular, continuously monitor polar mesosphere summer echoes (PMSE), allow us to investigate connection between those phenomena and small-scale structures in charged aerosols. Simultaneous measurements of the densities of neutral air and charged aerosols make it possible to derive Schmidt numbers with a high spatial resolution. Our measurements show that the charged aerosols inside and between the PMSE layers are highly structured down to spatial scales of a few meters. The Schmidt numbers derived for the charged aerosols fall within the range from ~6 to ~4500 which implies particle radii from ~1 to ~26 nm.


Schmidt Number Density Fluctuation Turbulence Measurement Charged Aerosol Rocket Launch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The ECOMA project is sponsored by the German Space Center under DLR-grants 50OE0301 and 50OE0801. We would like to thank Martin Friedrich for supplying the electron density data and Ralph Latteck for provision of the radar data employed in this work.


  1. Baumgarten G, Fiedler J, Fricke KH, Gerding M, Hervig M, Hoffmann P, Müller N, Pautet P, Rapp M, Robert C, Rusch D, von Savigny C, Singer W (2009) The noctilucent cloud (NLC) display during the ECOMA/MASS sounding rocket flights on 3 August 2007: morphology on global to local scales. Ann Geophys 27:953CrossRefGoogle Scholar
  2. Baumgarten G, Fiedler J, Lübken FJ, von Cossart G (2008) Particle properties and water content of noctilucent clouds and their interannual variation. J Geophys Res. doi:10.1029/2007JD008884Google Scholar
  3. Brattli A, Lie-Svendsen Ø, Svenes K, Hoppe U, Strelnikova I, Rapp M, Latteck R, Friedrich M (2009) The ECOMA 2007 campaign: rocket observations and numerical modelling of aerosol particle charging and plasma depletion in a PMSE/NLC layer. Ann Geophys 27:781CrossRefGoogle Scholar
  4. Cho JYN, Hall TM, Kelley MC (1992) On the role of charged aerosols in polar mesosphere summer echoes. J Geophys Res 97:875Google Scholar
  5. Driscoll RJ, Kennedy LA (1985) A model for the spectrum of passive scalars in an isotropic turbulence field. Phys Fluids 28:72CrossRefGoogle Scholar
  6. Engler N, Singer W, Latteck R, Rapp M, Strelnikov B (2009) A case study of extrem aspect sensitive vhf radar backscatter in the vicinity of pmse during the ECOMA 2008 rocket campaign. Proceedings of the 19th ESA symposium on European rocket and balloon programmes and related research, Bad Reichenhall, Germany (ESA SP-671), 7–11 June 2009Google Scholar
  7. Friedrich M, Rapp M (2009) News from the Lower Ionosphere: A Review of Recent Developments. Surv Geophys 30:525. doi:10.1007/s10712-009-9074-2CrossRefGoogle Scholar
  8. Friedrich M, Torkar KM, Singer W, Strelnikova I, Rapp M, Robertson S (2009) Signatures of mesospheric particles in ionospheric data. Ann Geophys 27:823CrossRefGoogle Scholar
  9. Gelinas LJ, Lynch KA, Kelley MC, Collins S, Baker S, Zhou Q, Friedman JS (1998) First observation of meteoric charged dust in the tropical mesosphere. Geophys Res Lett 25(21):4047. doi:10.1029/1998GL900089CrossRefGoogle Scholar
  10. Giebeler J, Lübken FJ, Nägele M (1993) CONE - a new sensor for in-situ observations of neutral and plasma density fluctuations. Proceedings of the 11th ESA symposium on European rocket and balloon programmes and related research, Montreux, Switzerland (ESASP), pp 311–318Google Scholar
  11. Havnes O, Trøim J, Blix T, Mortensen W, Næsheim LI, Thrane E, Tønnesen T (1996) First detection of charged dust particles in the Earth’s mesosphere. J Geo-phys Res 101: 10839CrossRefGoogle Scholar
  12. Heisenberg W (1948) Zur statistischen Theorie der Turbulenz. Z Physik 124:628CrossRefGoogle Scholar
  13. Hervig ME, Gordley LL, Deaver LE, Siskind DE, Stevens MH, Russell JM, Bailey SM, Megner L, Bardeen CG (2009a) First Satellite Observations of Meteoric Smoke in the Middle Atmosphere. Geophys Res Lett 36:18805. doi:10.1029/2009GL039737CrossRefGoogle Scholar
  14. Hervig ME, Gordley LL, Russell JM, Bailey SM (2009b) SOFIE PMC observations during the northern summer of 2007. J Atmos Solar-Terr Phys 71:331. doi:10.1016/j.jastp.2008.08.010CrossRefGoogle Scholar
  15. Jübken FJ, Rapp M, Blix T, Thrane E (1998) The ALWIN MST radar - technical design and performances. Geophys Res Lett 25:893. doi:10.1029/98GL50479CrossRefGoogle Scholar
  16. Latteck R, Singer W, Bardey H (1999) Modeling the plasma response to small-scale aerosol particle perturbations in the mesopause region. Proceedings of the 14th ESA symposium on European rocket and balloon programmes and related research, Potsdam, Germany (ESA SP–437), pp 179–184Google Scholar
  17. Lie-Svendsen Ø, Blix TA, Hoppe U, Thrane EV (2003) First continuous temperature measurements within polar mesosphere summer echoes. J Geophys Res (Atmo-spheres) 108:8442. doi:10.1029/2002JD002753CrossRefGoogle Scholar
  18. Lübken F, Lautenbach J, Höffner J, Rapp M, Zecha M (2009) TOTAL: A new instrument to study turbulent parameters in the mesosphere and lower thermosphere. J Atmos Solar-Terr Phys 71:453. doi:10.1016/j.jastp.2008.06.001CrossRefGoogle Scholar
  19. Lübken FJ (1987) On the extraction of turbulent parameters from atmospheric density fluctuations. ESA SP-270: European rocket & balloon programmes and related research, pp 215–218Google Scholar
  20. Lübken FJ (1992) Seasonal variation of turbulent energy dissipation rates at high latitudes as determined by insitu measurements of neutral density fluctuations. J Geophys Res 97:20,385Google Scholar
  21. Lübken FJ (1997) In situ measurement of the Schmidt number within a PMSE layer. J Geophys Res 102:13,441CrossRefGoogle Scholar
  22. Lübken FJ, Giebeler J, Blix TJ, Thrane E, Singer W, Bremer J (1994) Microphysical and turbulent measurements of the Schmidt number in the vicinity of polar mesosphere summer echoes. Geophys Res Lett 21:1651CrossRefGoogle Scholar
  23. Lynch KA, Gelinas LJ, Kelley MC, Collins RL, Widholm M, Rau D, Mac-Donald E, Liu Y, Ulwick J, Mace P (2005) Multiple sounding rocket observations of charged dust in the polar winter mesosphere. J Geophys Res 110(A3):A03302. doi:10.1029/2004JA010502CrossRefGoogle Scholar
  24. Megner L, Khaplanov M, Baumgarten G, Gumbel J, Stegman J, Strelnikov B, Robert-son S (2009) Large mesospheric ice particles at exceptionally high altitudes. Ann Geophys 27:943CrossRefGoogle Scholar
  25. Rapp M, Hedin J, Strelnikova I, Friedrich M, Gumbel J, Lübken FJ (2005) Absolute density measurements in the middle atmosphere. Geophys Res Lett 32:L23821CrossRefGoogle Scholar
  26. Rapp M, Gumbel J, Lübken FJ (2001) D region electron number density limits for the existence of polar mesosphere summer echoes. Ann Geophys 19:571CrossRefGoogle Scholar
  27. Rapp M, Gumbel J, Lübken FJ, Latteck R (2002) Observations of positively charged nanoparticles in the nighttime polar mesosphere. J Geophys Res 107(D19):4187. doi:10.1029/2001JD001323CrossRefGoogle Scholar
  28. Rapp M, Lübken F (2003) On the nature of PMSE: Electron diffusion in the vicinity of charged particles revisited. J Geophys Res 108:8437. doi:10.1029/2002JD002857CrossRefGoogle Scholar
  29. Rapp M, Lübken FJ (2004) Polar mesosphere summer echoes (PMSE): Review of observations and current understanding. Atmos Chem Phys 4:2601CrossRefGoogle Scholar
  30. Rapp M, Strelnikova I (2009) Measurements of meteor smoke particles during the ECOMA-2006 campaign. J Atmos Solar-Terr Phys 71:477. doi:10.1016/j.jastp.2008.06.002CrossRefGoogle Scholar
  31. Rapp M, Strelnikova I, Strelnikov B, Friedrich M, Gumbel J, Hoppe UP, Blix T, Havnes O, Bracikowski P, Lynch K, Knappmiller S (2010a) Microphysical properties of mesospheric aerosols: an overview of in situ-results from the ECOMA-project.Google Scholar
  32. Rapp M, Strelnikova I, Strelnikov B, Hoffmann P, Friedrich M, Gumbel J, Megner L, Hoppe UP, Robertson S, Knappmiller S, Wolff M, Marsh DR (2010b) First in situ measurement of the vertical distribution of ice volume in a mesospheric ice cloud during the ECOMA/MASS rocket-campaign. J Geophys Res p. acceptedGoogle Scholar
  33. Rapp M, Strelnikova I, Strelnikov B, Latteck R, Baumgarten G, Li Q, Megner L, Gum-bel J, Friedrich M, Hoppe U, Robertson S (2009) Rocket-borne in-situ measurements of meteor smoke: charging properties and implications for seasonal variation. Ann Geophys 27:755CrossRefGoogle Scholar
  34. Rapp M, Thomas GE (2006) Modeling the microphysics of mesospheric ice particles - Assessment of current capabilities and basic sensitivities. J Atmos Solar-Terr Phys 68:715. doi:10.1016/j.jastp.2005.10.015CrossRefGoogle Scholar
  35. Strelnikov B, Rapp M, Lübken FJ (2003) A new technique for the analysis of neutral air density fluctuations measured in situ in the middle atmosphere. Geophys Res Lett 30:2052. doi:10.1029/2003GL018271CrossRefGoogle Scholar
  36. Strelnikov B, Rapp M, Strelnikova I, Engler N, Latteck R (2009a) Small-scale structures in neutrals and charged aerosol particles as observed during the ECOMA/MASS rocket campaign. Ann Geophys 27:1449CrossRefGoogle Scholar
  37. Strelnikov B, Rapp M, Strelnikova I, Latteck R, Engler N, Blix TA, Hoppe UP, Friedrich M (2009b) Small-scale structures in neutral and plasma species in the middle atmosphere as observed during the ECOMA rocket campaigns. Proceedings of the 19th ESA symposium on European rocket and balloon programmes and related research, Bad Reichenhall, Germany (ESA SP-671), 7–11 June 2009Google Scholar
  38. Strelnikova I, Rapp M, Strelnikov B, Baumgarten G, Brattli A, Svenes K, Hoppe UP, Friedrich M, Gumbel J, Williams BP (2009c) Measurements of meteor smoke particles during the ECOMA-2006 campaign. J Atmos Solar-Terr Phys 71:486. doi:10.1016/j.jastp.2008.07.011CrossRefGoogle Scholar
  39. Tatarskii VI (1961) Wave propagation in a turbulent medium. McGraw-Hill Book, New York, NYGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Radars and Sounding RocketsLeibniz Institute of Atmospheric Physics at the Rostock UniversityKuehlungsbornGermany

Personalised recommendations