SABER Observations of Daytime Atomic Oxygen and Ozone Variability in the Mesosphere

  • Anne K. SmithEmail author
  • Daniel R. Marsh
  • Martin G. Mlynczak
  • James M. RussellIII
  • Jeffrey C. Mast
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)


Multiyear observations from the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) instrument on the TIMED (Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics) satellite are used to determine the daytime variations of ozone and atomic oxygen in the upper mesosphere. Both O3 and O vary during the daylight hours in response to tidal variations in temperature and winds. Ozone around 85 km responds most strongly to the very large O variations and its variations are in phase with those of O and T. At 97 km, where the O variations are weaker, ozone responds more strongly to the temperature and its variations are out of phase with those of O and T.


Vertical Transport Middle Atmosphere Diurnal Tide Photolysis Rate Adiabatic Temperature Change 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in the publication are those of the authors and do not necessarily reflect the views of the National Science Foundation. Support for this research was also provided by the National Aeronautics and Space Administration, grants NNX09AG65G and NNX08AL87G.


  1. Brasseur GP, Solomon, S (2005) Aeronomy of the middle atmosphere, 3rd edn. Springer, DordrechtGoogle Scholar
  2. Chapman S (1930) On ozone and atomic oxygen in the upper atmosphere. Phil Mag 10:369Google Scholar
  3. Cho Y-M, Shepherd GG (2006) Correlation of airglow temperature and emission rate at Resolute Bay (74.68°N), over four winters (2001–2005). Geophys Res Lett 33:L06815. doi:10.1029/2005GL025298CrossRefGoogle Scholar
  4. Dikty S, Schmidt H, Weber M, von Savigny C, Mlynczak MG (2010) Daytime ozone and temperature variations in the mesosphere: a comparison between SABER observations and HAMMONIA model. Atmos Chem Phys Discuss 10:2005–2029CrossRefGoogle Scholar
  5. Llewellyn EJ, McDade IC (1996) A reference model for atomic oxygen in the terrestrial atmosphere. Adv Space Res 18:209–226CrossRefGoogle Scholar
  6. Madronich S, Flocke S (1998) The role of solar radiation in atmospheric chemistry. In: Boule P (ed) Handbook of environmental chemistry. Springer, Heidelberg, pp 1–26Google Scholar
  7. Marsh DR, Skinner WR, Marshall AR, Hays PB, Ortland DA, Yee J-H (2002) High resolution Doppler imager observations of ozone in the mesosphere and lower thermosphere. J Geophys Res 107:4390. doi:10.1029/2001JD001505CrossRefGoogle Scholar
  8. Marsh D, Smith A, Brasseur, G, Kaufmann M, Grossmann K (2001) The existence of a tertiary ozone maximum in the high-latitude middle mesosphere. Geophys Res Lett 28:4531–4534CrossRefGoogle Scholar
  9. Marsh DR, Smith AK, Mlynczak MG, Russell JM III (2006) SABER observations of the OH Meinel airglow variability near the mesopause. J Geophys Res 111:A10S05. doi:10.1029/2005JA011451CrossRefGoogle Scholar
  10. Mlynczak MG, Marshall BT, Martin-Torres FJ, Russell JM III, Thompson RE, Remsberg EE, Gordley LL (2007) Sounding of the atmosphere using broadband emission radiometry observations of daytime mesospheric O2(1Δ) 1.27 μm emission and derivation of ozone, atomic oxygen, and solar and chemical energy deposition rates. J Geophys Res 112:D15306. doi:10.1029/2006JD008355CrossRefGoogle Scholar
  11. Picone JM, Hedin AE, Drob DP, Aiken AC (2002) NRLMSIS-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res 107:1468. doi:10.1029/2002JA009430CrossRefGoogle Scholar
  12. Remsberg EE et al (2008) Assessment of the quality of the retrieved temperature versus pressure profiles in the middle atmosphere from TIMED/SABER. J Geophys Res 113:D17101. doi:10.1029/2008JD010013CrossRefGoogle Scholar
  13. Russell JP, Ward WE, Lowe RP, Roble RG, Shepherd GG, Solheim B (2005) Atomic oxygen profiles (80–115 km) derived from Wind Imaging Interferometer/Upper Atmospheric Research Satellite measurements of the hydroxyl and greenline airglow: local time latitude dependence. J Geophys Res 110:D15305. doi:10.1029/2004JD005570CrossRefGoogle Scholar
  14. Sander SP et al (2006) Chemical kinetics and photochemical data for use in atmospheric studies. Jet Propulsion Laboratory, Pasadena, CA.
  15. Smith AK, Marsh DR (2005) Processes that account for the ozone maximum at the mesopause. J Geophys Res 110:D23305. doi:10.1029/2005JD006298CrossRefGoogle Scholar
  16. Smith AK, Marsh DR, Mlynczak MG, Mast JC (2010) Temporal variations of atomic oxygen in the upper mesosphere from SABER. J Geophys Res 115:D18309. doi:10.1029/2005JD013434Google Scholar
  17. Ward WE (1999) A simple model of diurnal variations in the mesospheric oxygen nightglow. Geophys Res Lett 26:565–3568CrossRefGoogle Scholar
  18. Xu J, Liu H-L, Smith AK, Roble RG, Mertens CJ, Russell JM III, Mlynczak MG (2007a) Mesopause structure from thermosphere, ionosphere, mesosphere energetics and dynamics (TIMED)/sounding of the atmosphere using broadband emission radiometry (SABER) observations. J Geophys Res 112:D09102. doi:10.1029/2006JD007711CrossRefGoogle Scholar
  19. Xu J, Smith AK, Liu H-L, Yuan W, Wu Q, Jiang G, Mlynczak MG, Russell JM III, Franke SJ (2009) Seasonal and quasi-biennial variations in the migrating diurnal tide observed by thermosphere, ionosphere, mesosphere, energetics and dynamics (TIMED). J Geophys Res 114:D13107. doi:10.1029/2008JD011298CrossRefGoogle Scholar
  20. Xu J, Smith AK, Yuan W, Liu H-L, Wu Q, Mlynczak MG, Russell JM III (2007b) Global structure and long-term variations of zonal mean temperature observed by TIMED/SABER. J Geophys Res 112:D24106. doi:10.1029/2007JD008546CrossRefGoogle Scholar
  21. Zhu X, Yee J-H, Talaat ER (2007) Effect of dynamical-photochemical coupling on oxygen airglow emission and implications for daytime ozone retrieved from 127 μm emission. J Geophys Res 112:D20304. doi:10.1029/2007JD008447CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Anne K. Smith
    • 1
    Email author
  • Daniel R. Marsh
    • 2
  • Martin G. Mlynczak
    • 3
  • James M. RussellIII
    • 4
  • Jeffrey C. Mast
    • 5
  1. 1.Atmospheric Chemistry DivisionNational Center for Atmospheric ResearchBoulderUSA
  2. 2.Atmospheric Chemistry DivisionNational Center for Atmospheric ResearchBoulderUSA
  3. 3.NASA Langley Research CenterHamptonUSA
  4. 4.Center for Atmospheric SciencesHampton UniversityHamptonUSA
  5. 5.Science Systems and Application Inc.HamptonUSA

Personalised recommendations