Skip to main content

A Physical Mechanism of Positive Ionospheric Storms

  • Chapter
  • First Online:
Aeronomy of the Earth's Atmosphere and Ionosphere

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 2))

Abstract

A physical mechanism of the positive ionospheric storms at low and mid latitudes reported recently is reviewed, and comapred with the positive ionospheric storms observed during a super storm. In addition, the possible variations of the mechanism with the strength of the equatorward winds, intensity of prompt penetration electric field (PPEF), local time and season are discussed. According to the mechanism, the mechanical effects of the equatorward wind (1) reduce (or stop) the downward diffusion of plasma along the geomagnetic field lines, (2) raise the ionosphere to high altitudes of reduced chemical loss, and hence (3) accumulate the plasma at altitudes near and above the ionospheric peak centered at ±15°–30° magnetic latitudes. The daytime eastward PPEF, if occurs, also shifts the EIA crests to higher than normal latitudes. The positive ionospheric storms are most likely in the longitudes of morning-noon onset of the geomagnetic storms. The mechanism agrees with the positive ionospheric storms observed during the super storm of 07–08 November 2004.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdu MA, de Souza JR, Sobral JHA, Batista IS (2006) Magnetic storm associates disturbance dynamo effects over low and equatorial latitude ionosphere. In: Tsurutani B (eds) Recurrent magnetic storms: corotating solar wind streams. Geophysical monograph series, vol 167, pp 283–304. Copyright 2006 by the AGU, 10.1029/167GM22

    Google Scholar 

  • Alex S, Patil A, Rastogi RG (1986) Equatorial counter electrojet – Solution of some dilemma. Indian J Radio Space Phys 15: 114–118

    Google Scholar 

  • Bailey GJ, Balan N (1996) A low-latitude ionosphere-plasmasphere model. In: Schunk RW (ed) STEP Handbook. Utah State University, Logan, UT 84322–4405, p 173

    Google Scholar 

  • Balan N, Bailey GJ (1995) Equatorial plasma fountain and its effects: possibility of an additional layer. J Geophys Res 100(11): 21421

    Article  Google Scholar 

  • Balan N, Shiokawa K, Otsuka Y, Watanabe S, Bailey GJ (2009a) Super plasma fountain and equatorial ionization anomaly during penetration electric field. J Geophys Res 114: A03310. doi:10.1029/2008JA013768

    Article  Google Scholar 

  • Balan N, Shiokawa K, Otsuka Y, Kikuchi T, Vijaya Lekshmi D, Kawamura S, Yamamoto M, Bailey GJ (2009b) A physical mechanism of positive ionospheric storms at low and mid latitudes. J Geophys Res 115: A02304. doi:10.1029/2009JA014515

    Google Scholar 

  • Batista IS, de Paula E, Abdu MA, Trivedi N, Greenspan M (1991) Ionospheric effects of the March 13, 1989, magnetic storm at low and equatorial latitudes. J Geophys. Res 96(A8): 13943

    Article  Google Scholar 

  • Burns AG, Killeen TL, Deng W, Carignan GR, Roble RG (1995) Geomagnetic storm effects in the low- to middle-latitude upper thermosphere. J Geophys. Res 100(14):673

    Google Scholar 

  • Fejer BG, Jensen JW, Kikuchi T, Abdu MA, Chau JL (2007) Equatorial ionospheric electric fields during the November 2004 magnetic storm. J Geophys Res 112: A10304. doi:10.1029/2007JA012376

    Article  Google Scholar 

  • Foster JC (1993) Storm-time plasma transport at middle and high latitudes. J Geophys Res 98: 1675–1689

    Article  Google Scholar 

  • Fuller-Rowell TJ, Codrescu MV, Moffett RJ, Quegan S (1994) Response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res 99: 3893

    Article  Google Scholar 

  • Hanson WB, Moffett RJ (1996) Ionization transport effects in the equatorial F region. J Geophys Res 71: 5559

    Google Scholar 

  • Hedin AE (1987) MSIS-86 thermospheric model. J Geophys Res 92: 4649

    Article  Google Scholar 

  • Hedin AE et al (1991) Revised global model of thermosphere winds using satellite and ground-based observations. J Geophys Res 96: 7657

    Article  Google Scholar 

  • Heelis RA, Sojka JJ, David M, Schunk RW (2009) Storm time density enhancements in the middle-latitude dayside ionosphere. J Geophys Res 114:A03315. doi:10.1029/2008JA013690

    Article  Google Scholar 

  • Kelley MC, Vlasov MN, Foster JC, Coster AJ (2004) A quantitative explanation for the phenomenon known as storm-enhanced density. Geophys Res Lett 31: L19809. doi:10.1029/2004GL020875

    Article  Google Scholar 

  • Kikuchi T, Araki T, Maeda H, Maekawa K (1978) Transmission of polar electric fields to the equator. Nature 273: 650–651

    Article  Google Scholar 

  • Lin CH, Richmond AD, Heelis RA, Bailey GJ, Lu G, Liu JY, Yeh HC, Su SY (2005) Theoretical study of the low and mid latitude ionospheric electron density enhancement during the October 2003 storm: relative importance of the neutral wind and the electric field. J Geophys Res 110: A12312. doi:10.1029/2005JA011304

    Article  Google Scholar 

  • Liu H, Stolle C, Forster M, Watanabe S (2007) Solar activity dependence of the electron density in the equatorial anomaly regions observed by CHAMP. J Geophys Res 112: A11311. doi:10.1020/2007JA012616

    Article  Google Scholar 

  • Lu G, Goncharenko LP, Richmond AD, Roble RG, Aponte N (2008) A dayside ionospheric positive storm phase driven by neutral winds. J Geophys Res 113: A08304. doi:10.1029/2007JA012895

    Article  Google Scholar 

  • Maruyama T, Nakamura M (2007) Conditions for intense ionospheric storms expanding to lower mid latitudes. J Geophys Res 112: A05310. doi:10.1029/2006JA012226

    Article  Google Scholar 

  • Matuura N (1972) Theoretical models of ionospheric storms. Space Sci Reviews 13: 124–189

    Google Scholar 

  • Mendillo M, Klobuchar J (1975) Investigations of the ionospheric F region using multistation total electron content observations. J Geophys Res 80(4): 643–650

    Article  Google Scholar 

  • Otsuka Y et al (2002) A new technique for mapping of total electron content using GPS networks in Japan. Earth Planets Space 54: 63–70

    Google Scholar 

  • Prolss GW (1995) Ionospheric F region storms. In: Volland (ed) Handbook of atmospheric electrodynamics. CRC Press, Boca Raton, FL, pp 195–248

    Google Scholar 

  • Reddy CA, Fukao S, Takami T, Yamamoto M, Tsuda T, Nakamura T, Kato S (1990) A MU radar-based study of mid-latitude F region response to a geomagnetic disturbance. J Geophys. Res 95: 21077

    Article  Google Scholar 

  • Reigber C, Luhr H, Schwintzer P (2002) CHAMP mission status. Adv Space Res 30: 129–134

    Article  Google Scholar 

  • Rishbeth H (1991) F-region storms and thermospheric dynamics. J Geomagn Geoelectr 43: 513

    Google Scholar 

  • Roble RG, Dickinson RE, Ridley EC (1982) Global circulation and temperature structures of thermosphere with high-latitude plasma convection. J Geophys Res 87: 1599

    Article  Google Scholar 

  • Sastri J, Jyoti N, Somayajulu V, Chandra H, Devasia C (2000) Ionospheric storm of early November 1993 in the Indian equatorial region. J Geophys Res 105(A8): 18443

    Article  Google Scholar 

  • Shiokawa K, Tsugawa T, Otsuka Y, Ogawa T, Lu G, Saito A, Yamamoto M (2008) Optical and radio observations and AMIE/TIEGCM modeling of nighttime traveling ionospheric disturbances a storms. In: AGU, Washington, DC monograph on mid-latitude ionospheric dynamics and disturbances. pp 271–281

    Google Scholar 

  • Tsurutani B et al (2004) Global ionospheric uplift and enhancement associated with interplanetary electric fields. J Geophys Res 109: A08302. doi:10.1029/2003JA010342

    Article  Google Scholar 

  • Vijaya Lekshmi D, Balan N, Vaidyan VK, Alleyne H, Bailey GJ (2007) Response of the ionosphere to super storms. J Adv Space Res. doi:/10.1016/j.asr.2007.08.029

    Google Scholar 

  • Werner S, Bauske R, Prolss GW (1999) On the origin of positive ionospheric storms. Adv Space Res 24: 1485–1489

    Article  Google Scholar 

  • Zhao B et al (2008) Ionosphere disturbance observed throughout Southeast Asis of the superstorm of 20–22 November 2003. J Geophys Res 113: A00A04. doi:10.1029/2008JA013054

    Article  Google Scholar 

Download references

Acknowledgments

We thank NICT (Tokyo) for the Yap and Okinawa magnetometer and ionosonde data, Y. Otsuka of STEL (Nagoya University) for the GPS-TEC data, H. Liu of RISH (Kyoto University) for plotting the CHAMP data, and ACE team for the solar wind and IMF data. The CHAMP mission is supported by the German Aerospace Center (DLR) in operation, and by the Federal Ministry of Education and Research (BMBF) in data processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanan Balan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Balan, N., Bailey, G.J. (2011). A Physical Mechanism of Positive Ionospheric Storms. In: Abdu, M., Pancheva, D. (eds) Aeronomy of the Earth's Atmosphere and Ionosphere. IAGA Special Sopron Book Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0326-1_36

Download citation

Publish with us

Policies and ethics