A Physical Mechanism of Positive Ionospheric Storms

  • Nanan BalanEmail author
  • Graham J. Bailey
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)


A physical mechanism of the positive ionospheric storms at low and mid latitudes reported recently is reviewed, and comapred with the positive ionospheric storms observed during a super storm. In addition, the possible variations of the mechanism with the strength of the equatorward winds, intensity of prompt penetration electric field (PPEF), local time and season are discussed. According to the mechanism, the mechanical effects of the equatorward wind (1) reduce (or stop) the downward diffusion of plasma along the geomagnetic field lines, (2) raise the ionosphere to high altitudes of reduced chemical loss, and hence (3) accumulate the plasma at altitudes near and above the ionospheric peak centered at ±15°–30° magnetic latitudes. The daytime eastward PPEF, if occurs, also shifts the EIA crests to higher than normal latitudes. The positive ionospheric storms are most likely in the longitudes of morning-noon onset of the geomagnetic storms. The mechanism agrees with the positive ionospheric storms observed during the super storm of 07–08 November 2004.


Geomagnetic Storm Neutral Wind Ionospheric Storm Equatorial Ionization Anomaly Geomagnetic Field Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank NICT (Tokyo) for the Yap and Okinawa magnetometer and ionosonde data, Y. Otsuka of STEL (Nagoya University) for the GPS-TEC data, H. Liu of RISH (Kyoto University) for plotting the CHAMP data, and ACE team for the solar wind and IMF data. The CHAMP mission is supported by the German Aerospace Center (DLR) in operation, and by the Federal Ministry of Education and Research (BMBF) in data processing.


  1. Abdu MA, de Souza JR, Sobral JHA, Batista IS (2006) Magnetic storm associates disturbance dynamo effects over low and equatorial latitude ionosphere. In: Tsurutani B (eds) Recurrent magnetic storms: corotating solar wind streams. Geophysical monograph series, vol 167, pp 283–304. Copyright 2006 by the AGU, 10.1029/167GM22Google Scholar
  2. Alex S, Patil A, Rastogi RG (1986) Equatorial counter electrojet – Solution of some dilemma. Indian J Radio Space Phys 15: 114–118Google Scholar
  3. Bailey GJ, Balan N (1996) A low-latitude ionosphere-plasmasphere model. In: Schunk RW (ed) STEP Handbook. Utah State University, Logan, UT 84322–4405, p 173Google Scholar
  4. Balan N, Bailey GJ (1995) Equatorial plasma fountain and its effects: possibility of an additional layer. J Geophys Res 100(11): 21421CrossRefGoogle Scholar
  5. Balan N, Shiokawa K, Otsuka Y, Watanabe S, Bailey GJ (2009a) Super plasma fountain and equatorial ionization anomaly during penetration electric field. J Geophys Res 114: A03310. doi:10.1029/2008JA013768CrossRefGoogle Scholar
  6. Balan N, Shiokawa K, Otsuka Y, Kikuchi T, Vijaya Lekshmi D, Kawamura S, Yamamoto M, Bailey GJ (2009b) A physical mechanism of positive ionospheric storms at low and mid latitudes. J Geophys Res 115: A02304. doi:10.1029/2009JA014515Google Scholar
  7. Batista IS, de Paula E, Abdu MA, Trivedi N, Greenspan M (1991) Ionospheric effects of the March 13, 1989, magnetic storm at low and equatorial latitudes. J Geophys. Res 96(A8): 13943CrossRefGoogle Scholar
  8. Burns AG, Killeen TL, Deng W, Carignan GR, Roble RG (1995) Geomagnetic storm effects in the low- to middle-latitude upper thermosphere. J Geophys. Res 100(14):673Google Scholar
  9. Fejer BG, Jensen JW, Kikuchi T, Abdu MA, Chau JL (2007) Equatorial ionospheric electric fields during the November 2004 magnetic storm. J Geophys Res 112: A10304. doi:10.1029/2007JA012376CrossRefGoogle Scholar
  10. Foster JC (1993) Storm-time plasma transport at middle and high latitudes. J Geophys Res 98: 1675–1689CrossRefGoogle Scholar
  11. Fuller-Rowell TJ, Codrescu MV, Moffett RJ, Quegan S (1994) Response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res 99: 3893CrossRefGoogle Scholar
  12. Hanson WB, Moffett RJ (1996) Ionization transport effects in the equatorial F region. J Geophys Res 71: 5559Google Scholar
  13. Hedin AE (1987) MSIS-86 thermospheric model. J Geophys Res 92: 4649CrossRefGoogle Scholar
  14. Hedin AE et al (1991) Revised global model of thermosphere winds using satellite and ground-based observations. J Geophys Res 96: 7657CrossRefGoogle Scholar
  15. Heelis RA, Sojka JJ, David M, Schunk RW (2009) Storm time density enhancements in the middle-latitude dayside ionosphere. J Geophys Res 114:A03315. doi:10.1029/2008JA013690CrossRefGoogle Scholar
  16. Kelley MC, Vlasov MN, Foster JC, Coster AJ (2004) A quantitative explanation for the phenomenon known as storm-enhanced density. Geophys Res Lett 31: L19809. doi:10.1029/2004GL020875CrossRefGoogle Scholar
  17. Kikuchi T, Araki T, Maeda H, Maekawa K (1978) Transmission of polar electric fields to the equator. Nature 273: 650–651CrossRefGoogle Scholar
  18. Lin CH, Richmond AD, Heelis RA, Bailey GJ, Lu G, Liu JY, Yeh HC, Su SY (2005) Theoretical study of the low and mid latitude ionospheric electron density enhancement during the October 2003 storm: relative importance of the neutral wind and the electric field. J Geophys Res 110: A12312. doi:10.1029/2005JA011304CrossRefGoogle Scholar
  19. Liu H, Stolle C, Forster M, Watanabe S (2007) Solar activity dependence of the electron density in the equatorial anomaly regions observed by CHAMP. J Geophys Res 112: A11311. doi:10.1020/2007JA012616CrossRefGoogle Scholar
  20. Lu G, Goncharenko LP, Richmond AD, Roble RG, Aponte N (2008) A dayside ionospheric positive storm phase driven by neutral winds. J Geophys Res 113: A08304. doi:10.1029/2007JA012895CrossRefGoogle Scholar
  21. Maruyama T, Nakamura M (2007) Conditions for intense ionospheric storms expanding to lower mid latitudes. J Geophys Res 112: A05310. doi:10.1029/2006JA012226CrossRefGoogle Scholar
  22. Matuura N (1972) Theoretical models of ionospheric storms. Space Sci Reviews 13: 124–189Google Scholar
  23. Mendillo M, Klobuchar J (1975) Investigations of the ionospheric F region using multistation total electron content observations. J Geophys Res 80(4): 643–650CrossRefGoogle Scholar
  24. Otsuka Y et al (2002) A new technique for mapping of total electron content using GPS networks in Japan. Earth Planets Space 54: 63–70Google Scholar
  25. Prolss GW (1995) Ionospheric F region storms. In: Volland (ed) Handbook of atmospheric electrodynamics. CRC Press, Boca Raton, FL, pp 195–248Google Scholar
  26. Reddy CA, Fukao S, Takami T, Yamamoto M, Tsuda T, Nakamura T, Kato S (1990) A MU radar-based study of mid-latitude F region response to a geomagnetic disturbance. J Geophys. Res 95: 21077CrossRefGoogle Scholar
  27. Reigber C, Luhr H, Schwintzer P (2002) CHAMP mission status. Adv Space Res 30: 129–134CrossRefGoogle Scholar
  28. Rishbeth H (1991) F-region storms and thermospheric dynamics. J Geomagn Geoelectr 43: 513Google Scholar
  29. Roble RG, Dickinson RE, Ridley EC (1982) Global circulation and temperature structures of thermosphere with high-latitude plasma convection. J Geophys Res 87: 1599CrossRefGoogle Scholar
  30. Sastri J, Jyoti N, Somayajulu V, Chandra H, Devasia C (2000) Ionospheric storm of early November 1993 in the Indian equatorial region. J Geophys Res 105(A8): 18443CrossRefGoogle Scholar
  31. Shiokawa K, Tsugawa T, Otsuka Y, Ogawa T, Lu G, Saito A, Yamamoto M (2008) Optical and radio observations and AMIE/TIEGCM modeling of nighttime traveling ionospheric disturbances a storms. In: AGU, Washington, DC monograph on mid-latitude ionospheric dynamics and disturbances. pp 271–281Google Scholar
  32. Tsurutani B et al (2004) Global ionospheric uplift and enhancement associated with interplanetary electric fields. J Geophys Res 109: A08302. doi:10.1029/2003JA010342CrossRefGoogle Scholar
  33. Vijaya Lekshmi D, Balan N, Vaidyan VK, Alleyne H, Bailey GJ (2007) Response of the ionosphere to super storms. J Adv Space Res. doi:/10.1016/j.asr.2007.08.029Google Scholar
  34. Werner S, Bauske R, Prolss GW (1999) On the origin of positive ionospheric storms. Adv Space Res 24: 1485–1489CrossRefGoogle Scholar
  35. Zhao B et al (2008) Ionosphere disturbance observed throughout Southeast Asis of the superstorm of 20–22 November 2003. J Geophys Res 113: A00A04. doi:10.1029/2008JA013054CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Control and Systems EngineeringUniversity of SheffieldSheffieldUK
  2. 2.Department of Applied MathematicsSheffield UniversitySheffieldUK

Personalised recommendations