Advertisement

Modeling the Storm Time Electrodynamics

  • Naomi MaruyamaEmail author
  • Timothy J. Fuller-Rowell
  • Mihail V. Codrescu
  • David Anderson
  • Arthur D. Richmond
  • Astrid Maute
  • Stanislav Sazykin
  • Frank R. Toffoletto
  • Robert W. Spiro
  • Richard A. Wolf
  • George H. Millward
Chapter
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)

Abstract

A model that electrodynamically couples inner magnetosphere, ionosphere, plasmasphere, thermosphere, and electrodynamics has been developed and is used to separate sources of the storm time electric fields between the magnetospheric, ionospheric, and thermospheric processes and to investigate their nonlinear interactions. The two sources of the electric-field disturbances, prompt penetration (PP) and disturbance dynamo (DD), have been identified in the coupled model results. Furthermore, the results suggest that the sources of variability in storm time electric fields are associated with the nonlinear interaction between the PP and DD, such that the response depends on the preconditioning of the coupled system. The preconditioning in this study is caused by the fact that the magnetosphere, ionosphere, and thermosphere respond to external forcing as a coupled system. The results clearly demonstrate the need for a fully coupled model of magnetosphere–ionosphere–thermosphere, in order to determine the preconditioning effect.

Keywords

Interplanetary Magnetic Field Neutral Wind Storm Time Ionospheric Conductivity Disturbance Dynamo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

NM was supported by the National Science Foundation under Agreement Number ATM0720406, and NASA GSFC: LWS TRT NNX06AC68G and Guest Investigator C/NOFS program NNX09AN58G. AR and AM were supported in part by the NASA LWS program. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

References

  1. Blanc M, Richmond AD (1980) The ionospheric disturbance dynamo. J Geophys Res 85:1669–1686CrossRefGoogle Scholar
  2. Fejer BG, Jensen JW, Kikuchi T, Abdu MA, Chau JL (2007) Equatorial ionospheric electric fields during the November 2004 magnetic storm. J Geophys Res 112:A10304. http://doi:10.1029/2007JA012376 CrossRefGoogle Scholar
  3. Fejer BG, Scherliess L (1997) Empirical models of storm time equatorial electric fields. J Geophys Res 102:24,047CrossRefGoogle Scholar
  4. Fejer BG, Spiro RW, Wolf RA, Foster JC (1990) Latitudinal variation of perturbation electric fields during magnetically disturbed periods: 1986 SUNDIAL observations and model results. Ann Geophys 8:441Google Scholar
  5. Forbes JM, Harel M (1989) Magnetosphere-thermosphere coupling: an experiment in interactive modeling. J Geophys Res 94:2631–2644CrossRefGoogle Scholar
  6. Fuller-Rowell TJ, Evans DS (1987) Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS/NOAA satellite data. J Geophys Res 92:7606–7618CrossRefGoogle Scholar
  7. Fuller-Rowell TJ, Millward GH, Richmond AD, Codrescu MV (2002) Stormtime changes in the upper atmosphere at low latitudes. J Atmos Solar-Terr Phys 64:1383CrossRefGoogle Scholar
  8. Fuller-Rowell TJ, Richmond AD, Maruyama N (2008) Global modeling of storm-time thermospheric dynamics and electrodynamics. In: Kintner PM Jr, Coster AJ, Fuller-Rowell T, Mannucci AJ, Mendillo M, Heelis R (eds) Midlatitude ionospheric dynamics and disturbances. Geophysical monograph series, vol 181, 10.1029/181GM18. American Geophysical Union, Washington, DC 187–200Google Scholar
  9. Garner TW (2003) Numerical experiments on the inner magnetospheric electric field. J Geophys Res 108(A10): 1373. http://doi:10.1029/2003JA010039 CrossRefGoogle Scholar
  10. Heelis RA, Lowell JK, Spiro RW (1982) A model of the high-latitude ionospheric convection pattern. J Geophys Res 87:6339–6345CrossRefGoogle Scholar
  11. Huang CY, Frank LA (1986) A statistical study of the central plasma sheet: implications for substorm models. Geophys Res Lett 13:652–655CrossRefGoogle Scholar
  12. Huang CY, Frank LA (1994) A statistical survey of the central plasma sheet. J Geophys Res 99:83CrossRefGoogle Scholar
  13. Huang C-M, Richmond AD, Chen M-Q (2005) Theoretical effects of geomagnetic activity on low-latitude ionospheric electric fields. J Geophys Res 110:A05312. http://doi:10.1029/2004JA010994 CrossRefGoogle Scholar
  14. Huba JD, Joyce G, Sazykin S, Wolf RA, Spiro RW (2005) Simulation study of penetration electric field effects on the low- to mid-latitude ionosphere. Geophys Res Lett 32(L23101). http://doi:10.1029/2005GL024162
  15. Jaggi RK, Wolf RA (1973) Self-consistent calculation of the motion of a sheet of ions in the magnetosphere. J Geophys Res 78(16):2852–2866CrossRefGoogle Scholar
  16. Kelley MC, Fejer BG, Gonzales CA (1979) An explanation for anomalous ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys Res Lett 6:301CrossRefGoogle Scholar
  17. Maruyama N, Richmond AD, Fuller-Rowell TJ, Codrescu MV, Sazykin S, Toffoletto FR, Spiro RW, Millward GH (2005) Interaction between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere. Geophys Res Lett http://doi:10.1029/2005GL023763
  18. Maruyama N, Sazykin S, Spiro RW, Anderson D, Anghel A, Wolf RA, Toffoletto FR, Fuller-Rowell TJ, Codrescu MV, Richmond AD, Millward GH (2007) Modeling storm-time electrodynamics of the low latitude ionosphere thermosphere system: can long lasting disturbance electric fields be accounted for? J Atmos Solar-Terr Phys. http://doi:10.1016/j.jastp.2006.08.020
  19. Millward GH, Moffett RJ, Quegan S, Fuller-Rowell TJ (1996) A coupled thermosphere-ionosphere-plasmasphere model (CTIP). In: Schunk RW (ed) STEP hand book. Utah State University, Logan, UT, pp 239–279Google Scholar
  20. Millward GH, Muller-Wodarg ICF, Aylward AD, Fuller-Rowell TJ, Richmond AD, Moffett RJ (2001) An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphere-thermosphere model with coupled electrodynamics. J Geophys Res 106:24,733–24,744Google Scholar
  21. Nishida A (1968) Coherence of geomagnetic DP2 fluctuations with interplanetary magnetic variations. J Geophys Res 75:5549CrossRefGoogle Scholar
  22. Peymirat C, Richmond AD, Emery BA, Roble RG (1998) A magnetosphere-thermosphere-ionosphere-electrodynamics general-circulation model. J Geophys Res 103:17,467–17,477Google Scholar
  23. Peymirat C, Richmond AD, Kobea AT (2000) Electrodynamic coupling of high and low latitudes: Simulations of shielding/overshielding effects. J Geophys Res 105:22,991CrossRefGoogle Scholar
  24. Richmond AD (1995) Ionospheric electrodynamics using magnetic APEX coordinates. J Geomag Geoelect 47:191–212Google Scholar
  25. Richmond AD, Peymirat C, Roble RG (2003) Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere-ionosphere-thermosphere model. J Geophys Res 108(A3). http://doi:10.1029/2002JA009758
  26. Richmond AD, Ridley EC, Roble RG (1992) A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys Res Lett 19:601–604CrossRefGoogle Scholar
  27. Sazykin S (2000) Theoretical studies of penetration of magnetospheric electric fields to the ionosphere. Ph.D. thesis, Utah State University, Logan, UTGoogle Scholar
  28. Scherliess L, Fejer BG (1997) Storm time dependence of equatorial disturbance dynamo zonal electric fields. J Geophys Res 102(A12):24,037Google Scholar
  29. Senior C, Blanc M (1984) On the control of magnetospheric convection by the spatial distribution of ionospheric conductivities. J Geophys Res 89:261CrossRefGoogle Scholar
  30. Spiro RW, Wolf RA, Fejer BG (1988) Penetration of high-latitude electric-field effects to low latitudes during sundial 1984. Ann Geophys 6:39Google Scholar
  31. Toffoletto FR, Sazykin S, Spiro RW, Wolf RA (2003) Inner magnetospheric modeling with the rice convection model. Space Sci Rev 107:175–196CrossRefGoogle Scholar
  32. Torr DG, Torr MR (1979) Chemistry of the thermosphere and ionosphere. J Atmos Solar-Terr Phys 41:797–839CrossRefGoogle Scholar
  33. Tsyganenko NA, Singer HJ, Kasper JC (2003) Storm-time distortion of the inner magnetosphere: how severe can it get? J Geophys Res 108(A5). http://doi:10.1029/2002JA009808
  34. Vasyliunas VM (1970) Mathematical models of magnetospheric convection and its coupling to the ionosphere. In: McCormac BM (ed) Particles and fields in the magnetosphere. D. Reidel, Hingahm, MA, pp 60–71Google Scholar
  35. Wang W, Wiltberger M, Burns AG, Solomon SC, Killeen TL, Maruyama N, Lyon JG (2004) Initial results from the coupled magnetosphere-ionosphere-thermosphere model: thermosphere-ionosphere responses. J Atmos Solar-Terr Phys 66:1425. http://doi:10.1016/j.jastp.2004.04.008 CrossRefGoogle Scholar
  36. Wiltberger M, Wang W, Burns AG, Solomon SC, Lyon JG, Goodrich CC (2004) Initial results from the coupled magnetosphere-ionosphere-thermosphere model: magnetospheric and ionospheric responses. J Atmos Solar-Terr Phys 66:1411. http://doi:10.1016/j.jastp.2004.04.026 CrossRefGoogle Scholar
  37. Wolf RA (1983) The quasi-static (slow-flow) region of the magnetosphere. In: Carovillano RL, Forbes JM (eds) Solar-terrestrial physics: principles and theoretical foundations. D. Reidel, Hingahm, MA, pp 303–368Google Scholar
  38. Wolf RA, Spiro RW, Sazykin S, Toffoletto FR (2007) How the earth’s inner magnetosphere works: an evolving picture. J Atmos Solar-Terr Phys. http://doi:10.1016/j.jastp.2006.07.026
  39. Wolf RA, Spiro RW, Voigt G-H, Reiff PH, Chen CK, Harel M (1982) Computer simulation of inner magnetospheric dynamics for the magnetic storm of July 29, 1977. J Geophys Res 87:5949–5962CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Naomi Maruyama
    • 1
    • 2
    Email author
  • Timothy J. Fuller-Rowell
    • 2
    • 3
  • Mihail V. Codrescu
    • 2
  • David Anderson
    • 2
    • 3
  • Arthur D. Richmond
    • 4
  • Astrid Maute
    • 4
  • Stanislav Sazykin
    • 5
  • Frank R. Toffoletto
    • 5
  • Robert W. Spiro
    • 5
  • Richard A. Wolf
    • 5
  • George H. Millward
    • 6
  1. 1.Cooperative Institute for Research in Environmental Sciences, Space Weather Prediction CenterUniversity of ColoradoBoulderUSA
  2. 2.Space Weather Prediction CenterNational Oceanic and Atmospheric AdministrationBoulderUSA
  3. 3.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  4. 4.High Altitude ObservatoryNational Center for Atmospheric ResearchBoulderUSA
  5. 5.Physics and Astronomy DepartmentRice UniversityHoustonUSA
  6. 6.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderUSA

Personalised recommendations