Penetration of Magnetospheric Electric Fields to the Low Latitude Ionosphere During Storm/Substorms

  • Takashi KikuchiEmail author
  • Kumiko K. Hashimoto
  • Atsuki Shinbori
  • Yuji Tsuji
  • Shin-Ichi Watari
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)


Penetration of the magnetospheric electric fields to low latitude ionosphere is examined using magnetometer data from high latitude to the dip equator during substorms and geomagnetic storms. To detect the penetration electric fields, we analyzed magnetic disturbances at the dip equator, subtracted by those at low latitude (DP2). During substorm growth phase, the DP2 currents are enhanced by the dawn-to-dusk convection electric field, which are supplied by the Region-1 field-aligned currents (R1 FACs) via the mid and low latitude ionosphere. On the other hand, the DP2 currents decrease significantly during the substorm expansion, superposed by reversed currents flowing from the R2 FACs. In particular, when the IMF turns northward during the substorm, the DP2 currents change to the counterelectrojet (CEJ), i.e., overshielding currents at the dip equator. During the storm main phase, the DP2 currents are very much intensified by the enhanced convection electric field. However, the DP2 currents change to the CEJ at the beginning of the storm recovery phase. The overshielding electric field as well as the convection electric field causes dramatic changes in the low latitude ionosphere.


Interplanetary Magnetic Field Geomagnetic Storm Auroral Electrojet Storm Main Phase Convection Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abdu MA, Sastri JH, Luhr H, Tachihara H, Kitamura T, Trivedi NB, Sobral JHA (1988) DP 2 electric field fluctuations in the dusk-time dip equatorial ionosphere. Geophys Res Lett 25:9. http://doi:10.1029/98GL01096 Google Scholar
  2. Araki T (1977) Global structure of geomagnetic sudden commencements. Planet Space Sci 25:373–384CrossRefGoogle Scholar
  3. Baker WG, Martyn DF (1953) Electric currents in the ionosphere I. The conductivity. Phil Trans R Soc Lond Ser A 246:281–294CrossRefGoogle Scholar
  4. Blanc M, Richmond AD (1980) The ionospheric disturbance dynamo. J Geophys Res 85:1669–1686CrossRefGoogle Scholar
  5. Burke WJ, Maynard NC, Hagan MP, Wolf RA, Wilson GR, Gentile LC, Gussenhoven MS, Huang CY, Garner TW, Rich FJ (1998) Electrodynamics of the inner magnetosphere observed in the dusk sector by CRRES and DMSP during the magnetic storm of June 4–6, 1991. J Geophys Res 103(A12):29,339–29,418Google Scholar
  6. Dungey JW (1961) Interplanetary magnetic field and the auroral zones. Phys Rev Lett 6:47CrossRefGoogle Scholar
  7. Fejer BG, Gonzales CA, Farley DT, Kelley MC (1979) Equatorial electric fields during magnetically disturbed conditions 1. The effect of the interplanetary magnetic field. J Geophys Res 84:5797–5802CrossRefGoogle Scholar
  8. Fejer BG, Jensen JW, Kikuchi T, Abdu MA, Chau JL (2007) Equatorial ionospheric electric fields during the November 2004 magnetic storm. J Geophys Res 112:A10304. http://doi:10.1029/2007JA012376 CrossRefGoogle Scholar
  9. Fejer BG, Scherliess L (1997) Empirical models of storm time equatorial zonal electric fields. J Geophys Res 102(A11):24,047–24,056Google Scholar
  10. Feldstein YI, Grafe A, Gromova LI, Popov VA (1997) Auroral electrojets during geomagnetic storms. J Geophys Res 102:14223–14235CrossRefGoogle Scholar
  11. Gonzales CA, Kelley MC, Fejer BG, Vickrey JF, Woodman RF (1979) Equatorial electric fields during magnetically disturbed conditions 2. Implications of simultaneous auroral and equatorial measurements. J Geophys Res 84:5803–5812CrossRefGoogle Scholar
  12. Hashimoto KK, Kikuchi T (2005) Quick response of the near-earth Magnetotail to changes in the interplanetary magnetic field. In: Pulkkinen TI, Tsyganenko NA, Friedel RHW (eds) The inner magnetosphere: physics and modeling. Geophysical monograph series, vol 155. AGU, Washington, DC, pp 47–53Google Scholar
  13. Hashimoto KK, Kikuchi T, Ebihara Y (2002) Response of the magnetospheric convection to sudden interplanetary magnetic field changes as deduced from the evolution of partial ring currents. J Geophys Res 107(A11):1337. http://doi:10.1029/2001JA009228 CrossRefGoogle Scholar
  14. Hirono M (1952) A theory of diurnal magnetic variations in equatorial regions and conductivity of the ionosphere E region. J Geomag Geoelectr Kyoto 4:7–21Google Scholar
  15. Huang C-S, Foster JC, Kelley MC (2005) Long-duration penetration of the interplanetary electric field to the low-latitude ionosphere during the main phase of magnetic storms. J Geophys Res 110:A11309. http://doi:10.1029/2005JA011202 CrossRefGoogle Scholar
  16. Iijima T, Nagata T (1972) Signatures for substorm development of the growth phase and expansion phase. Planet Space Sci 20:1095–1112CrossRefGoogle Scholar
  17. Iijima T, Potemra T (1976) The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. J Geophys Res 81:13. http://doi:10.1029/JA081i013p02165 Google Scholar
  18. Iijima T, Potemra T (1978) Large-scale characteristics of field-aligned currents associated with substorms. J Geophys Res 83:A2. http://doi:10.1029/JA083iA02p00599 Google Scholar
  19. Jaggi R, Wolf R (1973) Self-consistent calculation of the motion of a sheet of ions in the magnetosphere. J Geophys Res 78(16):2852–2866CrossRefGoogle Scholar
  20. Kamide Y, Sun W, Akasofu S-I (1996) The average ionospheric electrodynamics for the different substorm phases. J Geophys Res 101:A1. http://doi:10.1029/95JA02990 CrossRefGoogle Scholar
  21. Kelley MC, Fejer BG, Gonzales CA (1979) An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys Res Lett 6:301–304CrossRefGoogle Scholar
  22. Kikuchi T (1986) Evidence of transmission of polar electric fields to the low latitude at times of geomagnetic sudden commencements. J Geophys Res 91:3101–3105CrossRefGoogle Scholar
  23. Kikuchi T (2005) Transmission line model for driving plasma convection in the inner magnetosphere. In: Pulkkinen TI, Tsyganenko NA, Friedel RHW (eds) The inner magnetosphere: physics and modeling. Geophysical monograph series, vol 155. AGU, Washington, DC, pp 173–179Google Scholar
  24. Kikuchi T, Araki T (1979) Horizontal transmission of the polar electric field to the equator. J Atmos Terr Phys 41:927–936CrossRefGoogle Scholar
  25. Kikuchi T, Araki T, Maeda H, Maekawa K (1978) Transmission of polar electric fields to the equator. Nature 273:650–651CrossRefGoogle Scholar
  26. Kikuchi T, Hashimoto KK, Kitamura T-I, Tachihara H, Fejer B (2003) Equatorial counterelectrojets during substorms. J Geophys Res 108(A11):1406. http://doi:10.1029/2003JA009915 CrossRefGoogle Scholar
  27. Kikuchi T, Hashimoto KK, Nozaki K (2008a) Penetration of magnetospheric electric fields to the equator during a geomagnetic storm. J Geophys Res 113:A06214. http://doi:10.1029/2007JA012628 CrossRefGoogle Scholar
  28. Kikuchi T, Hashimoto KK, Nozaki K (2008b) Storm phase dependence of penetration of magnetospheric electric fields to mid and low latitudes. In: Kintner PM Jr, Coster AJ, Fuller-Rowell T, Mannucci AJ, Mendillo M, Heelis R (eds) Midlatitude ionospheric dynamics and disturbances. Geophysical Monograph Series, vol 181. AGU, Washington, DC, pp 145–155Google Scholar
  29. Kikuchi T, Ishimine T, Sugiuchi H (1985) Local time distribution of HF Doppler frequency deviations associated with storm sudden commencements. J Geophys Res 90:4389–4393CrossRefGoogle Scholar
  30. Kikuchi T, Luehr H, Schlegel K, Tachihara H, Shinohara M, Kitamura T–I (2000) Penetration of auroral electric fields to the equator during a substorm. J Geophys Res 105:23251–23261CrossRefGoogle Scholar
  31. Kikuchi T, Lühr H, Kitamura T, Saka O, Schlegel K (1996) Direct penetration of the polar electric field to the equator during a DP2 event as detected by the auroral and equatorial magnetometer chains and the EISCAT radar. J Geophys Res 101:17161–17173CrossRefGoogle Scholar
  32. Kobea AT, Amory-Mazaudier C, Do JM, Luehr H, Hougninou E, Vassal J, Blanc E, Curto JJ (1998) Equatorial electrojet as part of the global circuit: a case-study from the IEEY. Ann Geophys 16:698–710CrossRefGoogle Scholar
  33. Kobea AT, Richmond AD, Emery BA, Peymirat C, Luehr H, Moretto T, Hairston M, Amory-Mazaudier C (2000) Electrodynamic coupling of high and low latitudes: observations on May 27, 1993. J Geophys Res 105(A10):22979–22989CrossRefGoogle Scholar
  34. Matsushita S, Balsley BB (1972) A question of DP2 magnetic fluctuations. Planet Space Sci 20:1259–1267CrossRefGoogle Scholar
  35. Murakami G, Hirai M, Yoshikawa I (2007) The plasmapause response to the southward turning of the IMF derived from sequential EUVimages. J Geophys Res 112:A06217. http://doi:10.1029/2006JA012174 CrossRefGoogle Scholar
  36. Nagata T, Abe S (1955) Notes on the distribution of SC* in high latitudes. Rept Ionosph Res Jpn 9:39–44Google Scholar
  37. Nishida A (1968a) Geomagnetic Dp2 fluctuations and associated magnetospheric phenomena. J Geophys Res 73:1795–1803CrossRefGoogle Scholar
  38. Nishida A (1968b) Coherence of geomagnetic DP2 magnetic fluctuations with interplanetary magnetic variations. J Geophys Res 73:5549–5559CrossRefGoogle Scholar
  39. Nishida A, Iwasaki N, Nagata T (1966) The origin of fluctuations in the equatorial electrojet: a new type of geomagnetic variation. Ann Geophys 22:478–484Google Scholar
  40. Nishida A, Kamide Y (1983) Magnetospheric processes preceding the onset of an isolated substorm: a case study of the March 31, 1978, Substorm. J Geophys Res 88(A9):7005–7014CrossRefGoogle Scholar
  41. Nishimura Y, Kikuchi T, Wygant J, Shinbori A, Ono T, Matsuoka A, Nagatsuma T, Brautigam D (2009) Response of convection electric fields in the magnetosphere to IMF orientation change. J Geophys Res 114:A09206. http://doi:10.1029/2009JA014277 CrossRefGoogle Scholar
  42. Peymirat C, Richmond AD, Kobea AT (2000) Electrodynamic coupling of high and low latitudes: simulations of shielding/overshielding effects. J Geophys Res 105(A10):22991–23003CrossRefGoogle Scholar
  43. Rastogi RG (1977) Geomagnetic storms and electric fields in the equatorial ionosphere. Nature 268:422–424CrossRefGoogle Scholar
  44. Rastogi RG (1997) Midday reversal of equatorial ionospheric electric field. Ann Geophys 15:1309–1315CrossRefGoogle Scholar
  45. Rastogi RG, Patel VL (1975) Effect of interplanetary magnetic field on ionosphere over the magnetic equator. Proc Indian Acad Sci 82:121–141Google Scholar
  46. Senior C, Blanc M (1984) On the control of magnetospheric convection by the spatial distribution of ionospheric conductivities. J Geophys Res 89:261–284CrossRefGoogle Scholar
  47. Shinbori A, Nishimura Y, Ono T, Iizima M, Kumamoto A, Oya H (2005) Electrodynamics in the duskside inner magnetosphere and plasmasphere during a super magnetic storm on March 13–15, 1989. Earth Planets Space 57:643–659Google Scholar
  48. Siscoe GL, Crooker NU, Erickson GM, Sonnerup BUO, Siebert KD, Weimer DR, White WW, Maynard NC (2000) Global geometry of magnetospheric currents inferred from MHD simulations. In: Ohtani S, Fujii R, Hesse M, Lysak RL (eds) Magnetospheric current systems. Geophysical monograph series, vol 118. AGU, Washington, DC, pp 41–52Google Scholar
  49. Somayajulu VV, Reddy CA, Viswanathan KS (1987) Penetration of magnetospheric convective electric field to the equatorial ionosphere during the substorm of March 22, 1979. Geophys Res Lett 14:876–879CrossRefGoogle Scholar
  50. Southwood DJ (1977) The role of hot plasma in magnetospheric convection. J Geophys Res 82:5512–5520CrossRefGoogle Scholar
  51. Tanaka T (1995) Generation mechanisms for magnetosphere-ionosphere current systems deduced from athree-dimensional MHD simulation of the solar wind-magnetosphere-ionosphere coupling processes. J Geophys Res 100:A7. http://doi:10.1029/95JA00419 Google Scholar
  52. Tanaka T (2007) Magnetosphere–ionosphere convection as a compound system. Space Sci Rev. http://doi:10.1007/s11214-007-9168-4
  53. Tsurutani B et al (2004) Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. J Geophys Res 109:A08302. http://doi:10.1029/2003JA010342 CrossRefGoogle Scholar
  54. Vasyliunas VM (1972) The interrelationship of magnetospheric processes. In: McCormac BM (ed) Earth’s magnetospheric processes. Reidel, Norwell, Massachusetts, pp 29–38Google Scholar
  55. Wilson, GR, Burke WJ, Maynard NC, Huang CY, Singer HJ (2001) Global electrodynamics observed during the initial and main phases of the July 1991 magnetic storm. J Geophys Res 106(A11):24517–24539CrossRefGoogle Scholar
  56. Wygant J, Rowland D, Singer HJ, Temerin M, Mozer F, Hudson MK (1998) Experimental evidence on the role of the large spatial scale electric field in creating the ring current. J Geophys Res 103(A12):29527–29544. http://doi:10.1029/98JA01436 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Takashi Kikuchi
    • 1
    Email author
  • Kumiko K. Hashimoto
    • 2
  • Atsuki Shinbori
    • 3
  • Yuji Tsuji
    • 3
  • Shin-Ichi Watari
    • 4
  1. 1.Solar-Terrestrial Environment LaboratoryNagoya UniversityNagoyaJapan
  2. 2.Kyushu University of Health and WelfareNobeoka MiyazakiJapan
  3. 3.Solar-Terrestrial Environment LaboratoryNagoya UniversityNagoyaJapan
  4. 4.National Institute of Information and Communications TechnologyKoganei TokyoJapan

Personalised recommendations