Ionosphere Data Assimilation: Problems Associated with Missing Physics

  • R.W. SchunkEmail author
  • L. Scherliess
  • D.C. Thompson
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)


Physics-based data assimilation models can be used for a wide range of applications in space physics, but as with all models the data assimilation models have limitations. The limitations can be associated with the data, the assimilation technique, or the background physics-based model. Here, we focused on the ionosphere and on elucidating the problems associated with missing physics in the background ionosphere model. The study was conducted with the Global Assimilation of Ionospheric Measurements-Gauss-Markov (GAIM-GM) physics-based data assimilation model. Simulations relevant to the low and middle latitude ionosphere were conducted in order to show how missing physics in the background ionosphere model affects the reconstructions. The low-latitude simulation involved the presence of equatorial plasma bubbles and a background physics-based ionosphere model that does not self-consistently describe bubbles. This problem, coupled with insufficient data, led to a Gauss-Markov reconstruction that contained a broad region of relatively low nighttime Total Electron Density (TEC) values instead of the individual plasma bubbles. The implications of plasma bubbles for reconstructions with the GAIM-FP (Full Physics) data assimilation model, where the electric fields and neutral winds are determined self-consistently, are noted. The mid-latitude simulation involved a Gauss-Markov ionosphere reconstruction for a geomagnetic storm where a Storm Enhanced Density (SED) appeared across the United States. Again, the background physics-based model (Ionosphere Forecast Model) could not produce the SED feature because this model does not take account of penetrating electric fields. Nevertheless, in this case there were sufficient data to overcome the deficiency in the background ionosphere model and the Gauss-Markov data assimilation reconstruction successfully described the SED feature and surrounding ionosphere.


Geomagnetic Storm Neutral Wind Ionosphere Model Ensemble Kalman Filter Plasma Bubble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by Office of Naval Research grant N00014-09-1-0292 to Utah State University.


  1. Bust GS, Crowley G (2007) Tracking of polar cap ionospheric patches using data assimilation. J Geophys Res 112:A05307. doi:10.1029/2005JA011597CrossRefGoogle Scholar
  2. Decker DT, McNamara LF (2007) Validation of ionospheric weather predicted by global assimilation of ionospheric measurements (GAIM). Radio Sci 42:RS4017. doi:10.1029/2007RS003632CrossRefGoogle Scholar
  3. Foster JC et al (2005) Multiradar observations of the polar tongue of ionization. J Geophys Res 110:A09S31. doi:10.1029/2004JA010928CrossRefGoogle Scholar
  4. Hedin AE (1987) MSIS-86 Thermospheric Model. J Geophys Res 92:4649–4663CrossRefGoogle Scholar
  5. Heelis RA, Sojka JJ, David M, Schunk RW (2009) Storm time density enhancements in the middle-latitude dayside ionosphere. J Geophys Res 114(A3):A03315CrossRefGoogle Scholar
  6. Jee G, Burns AG, Wang W, Solomon SC, Schunk RW, Scherliess L, Thompson DC, Sojka JJ, Zhu L (2007) Duration of an ionospheric data assimilation initialization of a coupled thermosphere-ionosphere model. Space Weather 5:S01004. doi:10.1029/2006SW000250CrossRefGoogle Scholar
  7. Jee G, Burns AG, Wang W, Solomon SC, Schunk RW, Scherliess L, Thompson DC, Sojka JJ, Zhu L (2008) Driving the TING model with GAIM electron densities: ionospheric effects on the thermosphere. J Geophys Res 113:A03305. doi:10.1029/2007JA012580CrossRefGoogle Scholar
  8. Komjathy A, Wilson B, Pi X, Akopian V, Dumett M, Iijima B, Verkhoglyadova O, Mannucci AJ (2010) JPL/USC GAIM: On the impact of using COSMIC and ground-based GPS measurements to estimate ionospheric parameters. J Geophys Res 115:A02307. doi:10.1029/2009JA014420CrossRefGoogle Scholar
  9. McDonald SE, Su Basu, Basu S, Groves KM, Valladares CE, Scherliess L, Thompson DC, Schunk RW, Sojka JJ, Zhu L (2006) Extreme longitudinal variability of plasma structuring in the equatorial ionosphere on a magnetically quiet equinoctial day. Radio Sci 41:RS6S24. doi: 10.1029/2005RS003366CrossRefGoogle Scholar
  10. McNamara LF, Baker CR, Decker DT (2008) Accuracy of USU-GAIM specifications of foF2 and M(3000)F2 for a world-wide distribution of ionosonde locations. Radio Sci 43:RS1011. doi:10.1029/2007RS003754CrossRefGoogle Scholar
  11. McNamara LF, Decker DT, Welsh J, Cole DG (2007) Validation of the USU GAIM model predictions of the maximum usable frequency for a 3000 km circuit. Radio Sci 42:RS3015. doi:10.1029/2006RS003589CrossRefGoogle Scholar
  12. Scherliess L, Schunk RW, Sojka JJ, Thompson DC (2004) Development of a physics-based reduced state Kalman filter for the ionosphere. Radio Sci 39:RS1S04. doi:10.1029/2002RS002797CrossRefGoogle Scholar
  13. Scherliess L, Schunk RW, Sojka JJ, Thompson DC, Zhu L (2006) The USU GAIM Gauss-Markov Kalman filter model of the ionosphere: model description and validation. J Geophys Res 111:A11315. doi:10.1029/2006JA011712CrossRefGoogle Scholar
  14. Scherliess L, Thompson DC, Schunk RW (2009) Ionospheric dynamics and drivers obtained from a physics-based data assimilation model. Radio Sci 44:RS0A32. doi:10.1029/2008RS004068CrossRefGoogle Scholar
  15. Scherliess L, Thompson DC, Schunk RW (2010) Data assimilation models: a ‘new’ tool for ionospheric science and applications. In: Liu W, Fujimoto M (eds) The dynamic magnetosphere, IAGA. Springer, NY (in press)Google Scholar
  16. Schunk RW, Nagy AF (2009) Ionospheres, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  17. Schunk RW, Sojka JJ, Eccles JV (1997) Expanded capabilities for the ionospheric forecast model, Final Report, AFRL-VS-HA-TR-98-0001, 1–142Google Scholar
  18. Schunk RW et al (2004a) Global assimilation of ionospheric measurements (GAIM). Radio Sci 39:RS1S02. doi:10.1029/2002RS002794CrossRefGoogle Scholar
  19. Schunk RW et al (2004b) USU Global ionospheric data assimilation models. Proc SPIE 5548:327–336. doi:10.1117/12.562448CrossRefGoogle Scholar
  20. Schunk RW et al (2005a) An operational data assimilation model of the global ionosphere. In: Goodman JM (ed) Proceedings of 2005 ionospheric effects symposium. JMG Associates Ltd, Alexandria, VA, pp 512–518Google Scholar
  21. Schunk RW, Scherliess L, Sojka JJ, Thompson DC, Zhu L (2005b) Ionospheric weather forecasting on the horizon. Space Weather 3:S08007. doi:10.1029/2004SW000138CrossRefGoogle Scholar
  22. Sojka JJ, Thompson DC, Scherliess L, Schunk RW (2007) Assessing models for ionospheric weather specification over Australia during the 2004 CAWSES campaign. J Geophys Res 112:A09306. doi:10.1029/2006JA012048CrossRefGoogle Scholar
  23. Thompson DC, Scherliess L, Sojka JJ, Schunk RW (2006) The Utah State University Gauss-Markov Kalman filter in the ionosphere: the effect of slant TEC and electron density profile data on model fidelity. J Atmos Solar-Terr Phys 68:947–958CrossRefGoogle Scholar
  24. Thompson DC, Scherliess L, Sojka JJ, Schunk RW (2009) Plasmasphere and upper ionosphere contributions and corrections during the assimilation of GPS slant TEC. Radio Sci 44:RS0A02. doi:10.1029/2008RS004016CrossRefGoogle Scholar
  25. Zhu L et al (2006) Validation study of the ionosphere forecast model (IFM) using the TOPEX total electron content measurements. Radio Sci 41:RS5S11. doi:10.1029/2005RS003336CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Center for Atmospheric and Space SciencesUtah State UniversityLoganUSA
  2. 2.Center for Atmospheric and Space SciencesUtah State UniversityLoganUSA

Personalised recommendations