Storm-Time Response of the Thermosphere–Ionosphere System

  • Timothy J. Fuller-RowellEmail author
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)


During a geomagnetic storm, the magnetospheric energy injected into the upper atmosphere increases by at least an order of magnitude, and during these times far exceeds the solar EUV and UV energy input. The energy is initially deposited towards higher latitudes where it heats and expands the thermosphere, increasing temperature and neutral density. Ionospheric plasma at high latitudes accelerates in response to the magnetospheric forcing, and through collisions can drive neutral winds in excess of 1 km/s. Large scale gravity waves are launched equatorward preceding a change in global circulation. Upwelling at high latitude and equatorward winds transport molecular rich neutral gas towards mid and low latitudes, particularly in the summer hemisphere, where it speeds up recombination and depletes the ionosphere. Additional electrodynamic processes , such as prompt penetration and disturbance dynamo electric fields, accompany the dynamic response to storms and can cause a huge redistribution and increase of ionospheric plasma. The papers following this one will elucidate many of the details in the storm-time response and provide a broader perspective.


Solar Wind Total Electron Content Interplanetary Magnetic Field Geomagnetic Storm Neutral Wind 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Basu S, Basu S, Groves KM, Yeh H-C, Su S-Y, Rich FJ, Sultan PJ, Keskinen MJ (2001) Response of the equatorial ionosphere in the South Atlantic region to the great magnetic storm of July 15, 2000. Geophys Res Lett 28(18):3577–3580CrossRefGoogle Scholar
  2. Basu S, Kudeki E, Basu S, Valladares CE, Weber EJ, Zengingonul HP, Bhattacharyya S, Sheehan R, Meriwether JW, Biondi MA, Kuenzler H, Espinoza J (1996) Scintillations, plasma drifts, and neutral winds in the equatorial ionosphere after sunset. J Geophys Res 101(A12):26795–26810CrossRefGoogle Scholar
  3. Batista IS, de Paula ER, Abdu MA, Trivedi NB, Greenspan ME (1991) Ionospheric effects of the March 13, 1989, magnetic storm at low and equatorial latitudes. J Geophys Res 96(A8):13943–13952CrossRefGoogle Scholar
  4. Blanc M, Richmond AD (1980) The ionospheric disturbance dynamo. J Geophys Res 85:1669–1686CrossRefGoogle Scholar
  5. Buonsanto MJ (1999) Ionospheric storms – A review. Space Sci Rev 88:563–601CrossRefGoogle Scholar
  6. Burns AG, Killeen TL, Roble RG (1991) A theoretical study of thermospheric composition perturbations during an impulsive geomagnetic storm. J Geophys Res 96(A8): 14153–14167CrossRefGoogle Scholar
  7. Coster AJ, Foster J, Erikson P (2003) Monitoring the ionosphere with GPS. Space Weather, GPS World 14(5):42–49Google Scholar
  8. Crowley G, Meier RR (2008) Disturbed O/N2 ratios and their transport to mid and low latitudes. In: Kintner PM, Coster AJ, Fuller-Rowell TJ, Mannucci AJ, Mendillo M, Heelis R (eds) Midlatitde ionospheric dynamics and disturbances. Geophysical monograph series, vol 181. American Geophysical Union, Washington, DC, pp 221–234Google Scholar
  9. Crowley G, Schoendorf J, Roble R, Marcos F (1996) Cellular structures in the high-latitude thermosphere. J Geophys Res 101(A1):211–223CrossRefGoogle Scholar
  10. Emmert JT, Fejer BG, Fesen CG, Shepherd GG, Solheim BH (2001) Climatology of middle- and low-latitude daytime F- region disturbance neutral winds measured by Wind Imaging Interferometer (WINDII). J Geophys Res 106(A11): 24701–24712CrossRefGoogle Scholar
  11. Emmert JT, Fejer BG, Shepherd GG, Solheim BH (2002) Altitude dependence of middle and low-latitude daytime thermospheric disturbance winds measured by WINDII. J Geophys Res. 107(A12):1453Google Scholar
  12. Evans DS, Fuller-Rowell TJ, Maeda S, Foster J (1988) Specification of the heat input to the thermosphere from magnetospheric processes using TIROS/NOAA auroral particle observations. Adv Astronautical Sci 65:1649–1668Google Scholar
  13. Fedrizzi M, Fuller-Rowell TJ, Codrescu MV (2011) Physics-based modeling of upper atmosphere neutral density. Space Weather (submitted)Google Scholar
  14. Fedrizzi M, Fuller-Rowell TJ, Maruyama N, Codrescu MV, Khalsa H (2008) Global modeling of storm-time thermospheric dynamics and electrodynamics. In: Kintner PM, Coster AJ, Fuller-Rowell TJ, Mannucci AJ, Mendillo M, Heelis R (eds) Midlatitde ionospheric dynamics and disturbances. Geophysical monograph series, vol 181. American Geophysical Union, Washington, DC, pp 187–200Google Scholar
  15. Fejer BG, Emmert JT (2003) Low-latitude ionospheric disturbance electric field effects during the recovery phase of the 19–21 October 1998 magnetic storm. J Geophys Res 108(A12):1454CrossRefGoogle Scholar
  16. Fejer BG, Emmert JT, Sipler DP (2002) Climatology and storm time dependence of nighttime thermospheric neutral winds over Millstone Hill. J Geophys Res. doi:10.1029/2001JA000300Google Scholar
  17. Fejer BG, Kelley MC (1980) Ionospheric irregularities. Rev Geophys Space Phys 18:401CrossRefGoogle Scholar
  18. Fejer BG, Kelley MC, Senior C, de la Beaujardière O, Holt JA, Tepley CA, Burnside R, Abdu MA, Sobral JHA, Woodman RF, Kamide Y, Lepping R (1990) Low- and mid-latitude ionospheric electric fields during the January 1984 GISMOS campaign. J Geophys Res 95(A3):2367–2378CrossRefGoogle Scholar
  19. Fejer BG, Scherliess L (1997) Empirical models of storm time equatorial zonal electric fields. J Geophys Res 102(A11):24047–24056CrossRefGoogle Scholar
  20. Fejer BG, Scherliess L, de Paula ER (1999) Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J Geophys Res 104(A9):19859–19870CrossRefGoogle Scholar
  21. Fesen CG, Crowley G, Roble RG, Richmond AD, Fejer BG (2000) Simulations of the pre-reversal enhancement in the low latitude vertical ion drifts. Geophys Res Lett 27: 1851–1854CrossRefGoogle Scholar
  22. Field P, Rishbeth H (1997) The response of the ionospheric F 2 layer to geomagnetic activity: An analysis of worldwide data. J Atmos Solar-Terr Phys 59:163–180CrossRefGoogle Scholar
  23. Forbes JM (2007) Dynamics of the thermosphere. J Met Soc Jpn 85B:193–213CrossRefGoogle Scholar
  24. Forbes JM, Lu G, Bruinsma S, Nerem S, Zhang X (2005) Thermosphere density variations due to the 15–24 April 2002 solar events from CHAMP/STAR accelerometer measurements. J Geophys Res. 107(A5):1052Google Scholar
  25. Foster JC, Erickson PJ, Coster AJ, Goldstein J, Rich FJ (2002) Ionospheric signatures of plasmaspheric tails. Geophys Res Lett. 29(13):1623Google Scholar
  26. Foster JC, Rideout W (2005) Midlatitude TEC enhancements during the October 2003 superstorm. Geophys Res Lett. 32:L12504Google Scholar
  27. Fuller-Rowell TJ (1995) Dynamics of the lower thermosphere. In: Johnson RM, Killeen TL (eds) The upper mesosphere and lower thermosphere: a review of experiment and theory. Geophysical monograph series, vol 87. American Geophysical Union, Washington, DC, p 23Google Scholar
  28. Fuller-Rowell TJ, Codrescu MV, Moffett RJ, Quegan S (1994) Response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res 99(A3):3893–3914CrossRefGoogle Scholar
  29. Fuller-Rowell TJ, Codrescu MV, Risbeth H, Moffett RJ, Quegan S (1996b) On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res 101(A2):2343–2354CrossRefGoogle Scholar
  30. Fuller-Rowell TJ, Codrescu MV, Roble RG, Richmond AD (1997) How does the thermosphere and ionosphere react to a geomagnetic storm? In: Bruce BT, Gonzalez WD, Kamide Y, Arballo JK (eds) Magnetic storms. Geophysical monograph series, vol 98. American Geophysical Union, Washington, DC, pp 203–225Google Scholar
  31. Fuller-Rowell TJ, Millward GH, Richmond AD, Codrescu MV (2002) Storm-time changes in the upper atmosphere at low latitudes. J Atmos Solar-Terr Phys 64:1383–1391CrossRefGoogle Scholar
  32. Fuller-Rowell TJ, Rees D (1984) Interpretation of an anticipated long-lived vortex in the lower thermosphere following simulation of an isolated substorm. Planet Space Sci 32:69–85CrossRefGoogle Scholar
  33. Fuller-Rowell TJ, Rees D, Quegan S, Moffett RJ, Codrescu MV, Millward GH (1996a) A coupled thermosphere ionosphere model (CTIM). In: Schunk RW (ed) Handbook of ionospheric models. STEP Report. Utah State University, Logan, pp 217–238Google Scholar
  34. Fuller-Rowell TJ, Richmond AD, Maruyama N (2008) Global modeling of storm-time thermospheric dynamics and electrodynamics. In: Kintner PM, Coster AJ, Fuller-Rowell TJ, Mannucci AJ, Mendillo M, Heelis R (eds) Midlatitde ionospheric dynamics and disturbances. Geophysical monograph series, vol 181. American Geophysical Union, Washington, DC, pp 187–200Google Scholar
  35. Goldstein J, Burch JL, Sandel BR, Mende SB, Brandt PC, Hairston MR (2005) Coupled response of the inner magnetosphere and ionosphere on 17 April 2002. J Geophys Res. 110:A03205Google Scholar
  36. Goldstein J, Sandel BR, Hairston MR, Reiff PH (2003) Control of plasmaspheric dynamics by both convection and sub-auroral polarization stream. Geophys Res Lett. 30(24):2243Google Scholar
  37. Greenspan ME, Rasmussen CE, Burke WJ, Abdu MA (1991) Equatorial density depletions observed at 840 km during the great magnetic storm of March 1989. J Geophys Res 96(A8):13931–13942CrossRefGoogle Scholar
  38. Groves KM, Basu S, Weber EJ, Smitham M, Kuenzler H, Valladares CE, Sheehan R, MacKenzie E, Secan JA, Ning P, McNeill WJ, Moonan DW, Kendra MJ (1997) Equatorial scintillation and systems support. Radio Sci 32(5):2047–2064CrossRefGoogle Scholar
  39. Heelis RA (2004) Electrodynamics in the low and middle latitude ionosphere: A tutorial. J Atmos Solar-Terr Phys 66:825–838CrossRefGoogle Scholar
  40. Heelis RA, Sojka JJ, David M, Schunk RW (2009) Storm time density enhancements in the middle-latitude dayside ionosphere. J Geophys Res. 140:A03315Google Scholar
  41. Huang C-S, Foster JC, Kelley MC (2005) Long-duration penetration of the interplanetary electric field to the low-latitude ionosphere during the main phase of magnetic storms. J Geophys Res 110:A11309CrossRefGoogle Scholar
  42. Huba JD, Joyce G, Sazykin S, Wolf R, Spiro R (2005) Simulation study of penetration electric field effects on the low- to mid-latitude ionosphere. Geophys Res Lett. 32:L23101Google Scholar
  43. Hunsucker RD (1982) Atmospheric gravity waves generated in the high-latitude ionosphere: a review. Rev Geophys 20:293–315CrossRefGoogle Scholar
  44. Kelley MC, Fejer BG, Gonzales CA (1979) An explanation of anomalous ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys Res Lett 6:301CrossRefGoogle Scholar
  45. Killeen TL, Craven JD, Frank LA, Ponthieu J-J, Spencer NW, Heelis RA, Brace LH, Roble RG, Hays PB, Carignan GR (1988) On the relationship between dynamics of the polar thermosphere and morphology of the aurora: Global-scale observations from Dynamics Explorers 1 and 2. J Geophys Res 93(A4):2675–2692CrossRefGoogle Scholar
  46. Killeen TL, Hays PB, Carignan GR, Heelis RA, Hanson WB, Spencer NW, Brace LH (1984) Ion-neutral coupling in the high latitude F region: Evaluation of ion-neutral heating terms from the Dynamics Explorer 2. J Geophys Res 89:7495–7509CrossRefGoogle Scholar
  47. Kwak Y-S, Richmond AD (2007) An analysis of the momentum forcing in the high-latitude lower thermosphere. J Geophys Res. 112:A01306Google Scholar
  48. Lei J, Wang W, Burns AG, Solomon SC, Richmond AD, Wiltberger M, Goncharenko LP, Coster AJ, Reinisch BW (2008) Observations and simulations of the ionospheric and thermospheric response to the December 2006 geomagnetic storm: Initial phase. J Geophys Res. 113:A01314Google Scholar
  49. Liu H, Lühr H (2005) Strong disturbance of the upper thermospheric density due to magnetic storms: CHAMP observations. J Geophys Res. 110:A09529Google Scholar
  50. Lu G, Goncharenko LP, Richmond AD, Roble RG, Aponte N (2008) A dayside ionospheric positive storm phase driven by neutral winds. J Geophys Res. 113:A08304Google Scholar
  51. Mannucci AJ, Tsurutani BT, Iijima BA, Komjathy A, Saito A, Gonzalez WD, Guarnieri FL, Kozyra JU, Skoug R (2005) Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween Storms.” Geophys Res Lett. 32:L12S02Google Scholar
  52. Marsh DR, Solomon SC, Reynolds AE (2004) Empirical model of nitric oxide in the lower thermosphere. J Geophys Res. 109:A07301Google Scholar
  53. Maruyama N, Richmond AD, Fuller-Rowell TJ, Codrescu MV, Sazykin S, Toffoletto FR, Spiro RW, Millward GH (2005) Interaction between direct penetration and disturbance dynamo electric fields in the storm-time ionosphere. Geophys Res Lett. 32:L17105Google Scholar
  54. Maruyama N, Sazykin S, Spiro RW, Fejer BG, Wolf R, Anderson DN, Anghel A, Toffoletto FR, Fuller-Rowell TJ, Codrescu MV, Richmond AD, Millward GH (2007) Modeling storm-time electrodynamics of the low-latitude ionosphere-thermosphere system: Can long lasting disturbance electric fields be accounted for? J Atmos Solar-Terr Phys 69:1182–1199CrossRefGoogle Scholar
  55. Mendillo M, Papagiannis MD, Klobuchar JA (1970) Ionospheric storms at midlatitudes. Radio Sci 5:895–898CrossRefGoogle Scholar
  56. Millward GH, Moffett RJ, Quegan S, Fuller-Rowell TJ (1996) A coupled thermosphere ionosphere plasmasphere model (CTIP). In: Schunk RW (ed) Handbook of ionospheric models. STEP Report. Utah State University, Logan, pp 239–279Google Scholar
  57. Millward GH, Müller-Wodarg ICF, Aylward AD, Fuller-Rowell TJ, Richmond AD, Moffett RJ (2001) An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphere-thermosphere model with coupled electrodynamics. J Geophys Res 106:24733–24744CrossRefGoogle Scholar
  58. Paxton LJ, Christensen AB, Humm DC, Ogorzalek BS, Pardoe CT, Morrison D, Weiss MB, Crain W, Lew PH, Mabry DJ, Goldstein JO, Gary SA, Persons DF, Harold MJ, Alvarez EB, Ercol CJ, Strickland DJ, Meng C-I (1999) Global ultraviolet imager (GUVI): Measuring composition and energy inputs for the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission. In: Larer MA (ed) SPIE optical spectroscopic techniques and instrumentation for atmospheric and space research III, vol 3756. Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, pp 265–276Google Scholar
  59. Prölss GW (1997) Magnetic storm associated perturbations of the upper atmosphere. In: Bruce BT, Gonzalez WD, Kamide Y, Arballo JK (eds) Magnetic storms. Geophysical monograph series, vol 98. American Geophysical Union, Washington, DC, pp 227–241Google Scholar
  60. Richmond AD (1995) Ionospheric electrodynamics. In: Volland H (ed) Handbook of atmospheric electrodynamics, vol II. CRC Press, Boca Raton, FL, pp 249–290Google Scholar
  61. Richmond AD, Matsushita S (1975) Thermospheric response to a magnetic substorm. J Geophys Res 80(19):2839–2850CrossRefGoogle Scholar
  62. Richmond AD, Roble RG (1987) Electrodynamic effects of thermospheric winds from the NCAR thermospheric general circulation model. J Geophys Res 92:12365–12376CrossRefGoogle Scholar
  63. Rishbeth H, Fuller-Rowell TJ, Rees D (1987) Diffusive equilibrium and vertical motion in the thermosphere during a severe magnetic storm: A computational study. Planet Space Sci 35:1157–1165CrossRefGoogle Scholar
  64. Roble RG (1977) The upper atmosphere and magnetosphere. National Academy of Science, Washington, DCGoogle Scholar
  65. Rodger AS, Wrenn GL, Rishbeth H (1989) Geomagnetic storms in the Antarctic F region, II, Physical interpretation. J Atmos Solar-Terr Phys 51:851–866CrossRefGoogle Scholar
  66. Sazykin S, Spiro RW, Wolf RA, Toffoletto FR, Tsyganenko N, Goldstein J, Hairston M (2005) Modeling inner magnetospheric electric fields: Latest self-consistent results. In: Pulkkinen TI, Tsyganenko NA, Friedel RHW (eds) The inner magnetosphere: physics and modeling. Geophysical monograph series, vol 115. American Geophysical Union, Washington, DC, pp 263–269Google Scholar
  67. Scherliess L, Fejer BG (1997) Storm time dependence of equatorial disturbance dynamo zonal electric fields. J Geophys Res 102(A11):24037–24046CrossRefGoogle Scholar
  68. Schunk R, Raitt W, Banks P (1975) Effect of electric fields on the daytime high-latitude E and F regions. J Geophys Res 80(22):3121–3130CrossRefGoogle Scholar
  69. Shiokawa K, Otsuka Y, Ogawa T, Balan N, Igarashi K, Ridley AJ, Knipp DJ, Saito A, Yumoto K (2002) A large-scale traveling ionospheric disturbance during the magnetic storm of 15 September 1999. J Geophys Res. 107(A6):1088Google Scholar
  70. Skoblin MG, Förster M (1993) An alternative explanation of ionization depletions in the winter night-time storm perturbed F 2 layer. Ann Geophys 11:1026–1032Google Scholar
  71. Spiro RW, Wolf RA, Fejer BG (1988) Penetration of high-latitude-electric-field effects to low latitudes during SUNDIAL 1984. Ann Geophys 6:39–50Google Scholar
  72. Strickland DJ, Daniell RE, Craven JD (2001) Negative ionospheric storm coincident with DE 1-observed thermospheric disturbance on October 14, 1981. J Geophys Res 106(A10):21049–21062CrossRefGoogle Scholar
  73. Sutton EK, Forbes JM, Nerem RS (2005) Global thermospheric neutral density and wind response to the severe 2003 geomagnetic storms from CHAMP accelerometer data. J Geophys Res. 110:A09540Google Scholar
  74. Weimer DR (2005) Improved ionospheric electrodynamic models and application to calculating Joule heating rates. J Geophys Res. 110:A05306Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  2. 2.Space Weather Prediction Center, National Oceanic and Atmospheric AdministrationBoulderUSA

Personalised recommendations