Advertisement

Long-Term Trends in the Upper Atmosphere – Recent Progress

  • Jan LaštovičkaEmail author
Chapter
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)

Abstract

Anthropogenic emissions of greenhouse gases influence the atmosphere at nearly all altitudes between ground and space, thus affecting not only life on the surface, but also the space-based technological systems on which we increasingly rely. Long-term changes and trends in the upper atmosphere (mesosphere, thermosphere and ionosphere) are affected also by other drivers, stratospheric ozone depletion, changes in atmospheric wave forcing, changes in water vapour concentration, long-term changes of geomagnetic activity, and secular changes of Earth’s magnetic field. The global trend scenario in the upper atmosphere is presented. It forms a consistent pattern of global change at heights above 50 km. The upper atmosphere is generally cooling and contracting, and related changes in chemical composition (minor components) are affecting the ionosphere. A significant progress reached in the last few years in the three areas, which did not fit the global scenario of trends in the upper atmosphere, is described in more detail.

Keywords

Geomagnetic Activity Lower Thermosphere Atmospheric Wave Mesopause Region Gravity Wave Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work was supported by the Grant Agency of the Czech Republic through grant P209/10/1792.

References

  1. Akmaev RA, Fomichev VI, Zhu X (2006) Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere. J Atmos Solar-Terr Phys 68: 1879–1889CrossRefGoogle Scholar
  2. Beig G (2006) Trends in the mesopause region temperature and our present understanding – an update. Phys Chem Earth 30:3–9Google Scholar
  3. Beig G, Keckhut P, Lowe RP et al (2003) Review of mesospheric temperature trends. Rev Geophys 41:1015. doi:10.1029/2002RG000121CrossRefGoogle Scholar
  4. Bencze P (2009) Geographical distribution of long-term changes in the height of the maximum electron density of the F region: a nonmigrating tidal effect? J Geophys Res 111:A06304. doi:10.1029/2008JA013492CrossRefGoogle Scholar
  5. Bremer J (2008) Long-term trends in the ionospheric E, F1 regions. Ann Geophys 26:1189–1197CrossRefGoogle Scholar
  6. Bremer J, Peters D (2008) Influence of stratospheric ozone changes on long-term trends in the meso- and lower thermosphere. J Atmos Solar-Terr Phys 70:1473–1481CrossRefGoogle Scholar
  7. Bremer J, Laštovička J, Mikhailov AV, Altadill D, Bencze P, Burešová D, De Franceschi G, Jacobi C, Kouris S, Perrone L, Turunen E (2009) Climate of the upper atmosphere. Ann Geophys 52:273–279Google Scholar
  8. Clilverd MA, Clark TGC, Clarke E, Rishbeth H (1998) Increased magnetic storm activity from 1868 to 1995. J Atmos Solar-Terr Phys 60:1047–1056CrossRefGoogle Scholar
  9. Cnossen I, Richmond, AD (2008) Modelling the effect of changes in the earth’s magnetic field from 1957 to 1997 on the ionospheric hmF2 and foF2 parameters. J Atmos Solar-Terr Phys 70:1512–1524CrossRefGoogle Scholar
  10. Danilov AD (2005) Long-term trends in F2-layer parameters and their relation to other trends. Adv Space Res 35:1405–1410CrossRefGoogle Scholar
  11. Elias AG (2009) Trends in the F2 ionospheric layer due to long-term variations in the Earth’s magnetic field. J Atmos Solar-Terr Phys 71:1602–1609CrossRefGoogle Scholar
  12. Emmert JT, Picone JM, Meier RR (2008) Thermospheric global average density trends 1967–2007, derived from orbits of 5000 near-Earth objects. Geophys Res Lett 35:L05101. doi:10.1029/2007GL032809CrossRefGoogle Scholar
  13. Garcia RR, Marsh DR, Kinnison DE, Boville BA, Sassi F (2007) Simulation of secular trends in the middle atmosphere, 1950–2003. J Geophys Res 112:D09301. doi:10.1029/2006JD007485CrossRefGoogle Scholar
  14. Holt JM, Zhang S-R (2008) Long-term temperature trends in the ionosphere above Millstone Hill. Geophys Res Lett 35:L05813. doi:10.1029/2007GL031148CrossRefGoogle Scholar
  15. Jacobi C, Hoffmann P, Kürschner D (2008) Trends in MLT region winds and planetary waves, Collm (52oN, 15oE). Ann Geophys 26:1221–1232CrossRefGoogle Scholar
  16. Jacobi C, Hoffmann P, Liu RQ, Križan P, Laštovička J, Merzlyakov EG, Solovjova TV, Portnyagin YuI (2009) Midlatitude mesopause region winds and wave sand comparison with stratospheric variability. J Atmos Solar-Terr Phys 71:1540–1546CrossRefGoogle Scholar
  17. Kirkwood S, Dalin P, Réchou A (2008) Noctilucent clouds observed from the UK and Denmark – trends and variations over 43 years. Ann Geophys 26:1243–1254CrossRefGoogle Scholar
  18. Kubicky A, Keckhut P, Chanin M-L, Golitsyn GS, Lysenko E (2008) Temperature trends in the middle atmosphere as seen by historical Russian rocket launches: part II, Heiss Island (80.6°N, 58°E). J Atmos Solar-Terr Phys 70:145–155CrossRefGoogle Scholar
  19. Laštovička J, Bremer J (2004) An overview of long-term trends in the lower ionosphere below 120 km. Surv Geophys 25:69–99CrossRefGoogle Scholar
  20. Laštovička J (2005) On the role of solar and geomagnetic activity in long-term trends in the atmosphere-ionosphere system. J Atmos Solar-Terr Phys 67:83–92CrossRefGoogle Scholar
  21. Laštovička J, Akmaev RA, Beig G, Bremer J, Emmert JT (2006a) Global change in the upper atmosphere. Science 314:1253–1254CrossRefGoogle Scholar
  22. Laštovička J, Akmaev RA, Beig G, Bremer J, Emmert JT, Jacobi C, Jarvis MJ, Nedoluha G, Portnyagin Y, Ulich T (2008a) Emerging pattern of global change in the upper atmosphere and ionosphere. Ann Geophys 26:1255–1268CrossRefGoogle Scholar
  23. Laštovička J, Križan P, Kozubek M (2010) Long-term trends in the middle atmosphere dynamics at northern middle latitudes – one regime or two different regimes? Atmos Chem Phys Discuss 10:2633–2668Google Scholar
  24. Laštovička J, Mikhailov AV, Ulich Th, Bremer J, Elias AG, Ortiz de Adler N, Jara V, Abarca del Rio R, Foppiano AJ, Ovalle, E, Danilov, AD (2006b) Long-term trends in foF2: a comparison of various methods. J Atmos Solar-Terr Phys 68:1854–1870CrossRefGoogle Scholar
  25. Laštovička J, Yue X, Wan, W (2008b) Long-term trends in foF2: their estimating and origin. Ann Geophys 26:593–598CrossRefGoogle Scholar
  26. Marsh D, Smith A, Woble E (2003) Mesospheric ozone response to changes in water vapour. J Geophys Res 108:4109. doi:10.1029/2002JD002705CrossRefGoogle Scholar
  27. Martini D, Mursula K (2008) Centennial geomagnetic activity studied by a new, reliable long-term index. J Atmos Solar-Terr Phys 70:1074–1087CrossRefGoogle Scholar
  28. McNamara LF (2008) Accuracy of models of hmF2 used for long-term trend analyses. Radio Sci 43:RS2002. doi:10.1029/2007RS003740CrossRefGoogle Scholar
  29. Merzlyakov EG, Jacobi Ch., Portnyagin YuI, Solovjova TV (2009) Structural changes in trend parameters of the MLT winds based on wind measurements at Obninsk (55°N, 37°E) and Collm (52°N, 15°E). J Atmos Solar-Terr Phys 71:1547–1557CrossRefGoogle Scholar
  30. Mikhailov AV (2002) The geomagnetic control concept of the F2-layer parameter long-term trends. Phys Chem Earth 27:595–606Google Scholar
  31. Mikhailov AV (2006) Ionospheric long-term trends: can the geomagnetic control and the greenhouse hypothesis be reconciled? Ann Geophys 24:2533–2541CrossRefGoogle Scholar
  32. Mikhailov AV, de la Morena BA (2003) Long-term trends of foE and geomagnetic activity variations. Ann Geophys 21:751–760CrossRefGoogle Scholar
  33. Mursula K, Martini D (2006) Centennial increase in geomagnetic activity: Latitudinal difference and global estimates. J Geophys Res 111:A08209. doi:10.1029/2005JA011549CrossRefGoogle Scholar
  34. Nedoluha GE, Bevilacqua RM, Gomez RM, Hicks BC, Russell JM III, Connor BJ (2003) An evaluation of trends in middle atmospheric water vapor as measured by HALOE, WVMS, and POAM. J Geophys Res 108:4391. doi:10.1029/2002JD003332CrossRefGoogle Scholar
  35. Oltmans SJ, Vömel H, Hofmann DJ, Rosenlof KH, Kley D (2000) The increase in stratospheric water vapor from balloonborne, frostpoint hygrometer measurements at Washington, D.C., and Boulder, Colorado. Geophys Res Lett 27:3453–3456CrossRefGoogle Scholar
  36. Portnyagin YuI, Merzlyakov EG, Solovjova TV, Jacobi Ch, Kürschner D, Manson A, Meek C (2006) Long-term trends and year-to-year variability of mid-latitude mesosphere/lower thermosphere winds. J Atmos Solar-Terr Phys 68:1890–1901CrossRefGoogle Scholar
  37. Qian L, Burns AG, Solomon SC, Roble RG (2009) The effect of carbon dioxide cooling on trends in the F2 layer ionosphere. J Atmos Solar-Terr Phys 71:1592–1601CrossRefGoogle Scholar
  38. Qian L, Solomon SC, Roble RG, Kane TJ (2008) Model simulations of global change in the ionosphere. Geophys Res Lett 35:L07811. doi:10.1029/2007GL033156CrossRefGoogle Scholar
  39. Reinsel GC, Miller AJ, Weatherhead EC, Flynn LE, Nagatani RM, Tiao GC, Wuebbles DJ (2005) Trend analysis of total ozone data for turnaround and dynamical contributions. J Geophys Res 110:D16306. doi:10.1029/2004JD004662CrossRefGoogle Scholar
  40. Remsberg EE (2009) Trends and solar cycle effects in temperatures versus altitude from the halogen occultation experiment for the mesosphere and upper stratosphere. J Geophys Res 114:D12303. doi:10.1029/2009JD011897CrossRefGoogle Scholar
  41. Rishbeth H (1990) A greenhouse effect in the ionosphere? Planet Space Sci 38:945–948CrossRefGoogle Scholar
  42. Rishbeth H, Roble RG (1992) Cooling of the upper atmosphere by enhanced greenhouse gases – modelling of thermospheric and ionospheric effects. Planet Space Sci 40:1011–1026CrossRefGoogle Scholar
  43. Roble RG, Dickinson RE (1989) How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and lower thermosphere? Geophys Res Lett16: 1441–1444CrossRefGoogle Scholar
  44. Scherer M, Vömel H, Fueglistaler S, Oltmans SJ, Staehelin J (2008) Trends and variability of midlatitude stratospheric water vapour deduced from the re-evaluated Boulder balloon series and HALOE. Atmos Chem Phys 8:1391–1402CrossRefGoogle Scholar
  45. Shettle PE, DeLand MT, Thomas GE, Olivero JJ (2009) Long term variations in the frequency of polar mesospheric clouds in the Northern Hemisphere from SBUV. Geophys Res Lett 36:L02803. doi:10.1029/2008GL036048CrossRefGoogle Scholar
  46. Weatherhead EC, Reinsel GC, Tiao GC et al (2000) Detecting the recovery of total column ozone. J Geophys Res 105:22201–22210CrossRefGoogle Scholar
  47. Yue X, Wan W, Liu L, Ning B, Zhao B (2006) Applying artificial neural network to derive long-term foF2 trends in Asia/Pacific sector from ionosonde observations. J Geophys Res 111:D22307. doi:10.1029/2005JA011577CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Atmospheric Physics ASCRPragueCzech Republic

Personalised recommendations