Skip to main content

Long-Term Trends in the Upper Atmosphere – Recent Progress

  • Chapter
  • First Online:
Aeronomy of the Earth's Atmosphere and Ionosphere

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 2))

Abstract

Anthropogenic emissions of greenhouse gases influence the atmosphere at nearly all altitudes between ground and space, thus affecting not only life on the surface, but also the space-based technological systems on which we increasingly rely. Long-term changes and trends in the upper atmosphere (mesosphere, thermosphere and ionosphere) are affected also by other drivers, stratospheric ozone depletion, changes in atmospheric wave forcing, changes in water vapour concentration, long-term changes of geomagnetic activity, and secular changes of Earth’s magnetic field. The global trend scenario in the upper atmosphere is presented. It forms a consistent pattern of global change at heights above 50 km. The upper atmosphere is generally cooling and contracting, and related changes in chemical composition (minor components) are affecting the ionosphere. A significant progress reached in the last few years in the three areas, which did not fit the global scenario of trends in the upper atmosphere, is described in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akmaev RA, Fomichev VI, Zhu X (2006) Impact of middle-atmospheric composition changes on greenhouse cooling in the upper atmosphere. J Atmos Solar-Terr Phys 68: 1879–1889

    Article  Google Scholar 

  • Beig G (2006) Trends in the mesopause region temperature and our present understanding – an update. Phys Chem Earth 30:3–9

    Google Scholar 

  • Beig G, Keckhut P, Lowe RP et al (2003) Review of mesospheric temperature trends. Rev Geophys 41:1015. doi:10.1029/2002RG000121

    Article  Google Scholar 

  • Bencze P (2009) Geographical distribution of long-term changes in the height of the maximum electron density of the F region: a nonmigrating tidal effect? J Geophys Res 111:A06304. doi:10.1029/2008JA013492

    Article  Google Scholar 

  • Bremer J (2008) Long-term trends in the ionospheric E, F1 regions. Ann Geophys 26:1189–1197

    Article  Google Scholar 

  • Bremer J, Peters D (2008) Influence of stratospheric ozone changes on long-term trends in the meso- and lower thermosphere. J Atmos Solar-Terr Phys 70:1473–1481

    Article  Google Scholar 

  • Bremer J, Laštovička J, Mikhailov AV, Altadill D, Bencze P, Burešová D, De Franceschi G, Jacobi C, Kouris S, Perrone L, Turunen E (2009) Climate of the upper atmosphere. Ann Geophys 52:273–279

    Google Scholar 

  • Clilverd MA, Clark TGC, Clarke E, Rishbeth H (1998) Increased magnetic storm activity from 1868 to 1995. J Atmos Solar-Terr Phys 60:1047–1056

    Article  Google Scholar 

  • Cnossen I, Richmond, AD (2008) Modelling the effect of changes in the earth’s magnetic field from 1957 to 1997 on the ionospheric hmF2 and foF2 parameters. J Atmos Solar-Terr Phys 70:1512–1524

    Article  Google Scholar 

  • Danilov AD (2005) Long-term trends in F2-layer parameters and their relation to other trends. Adv Space Res 35:1405–1410

    Article  Google Scholar 

  • Elias AG (2009) Trends in the F2 ionospheric layer due to long-term variations in the Earth’s magnetic field. J Atmos Solar-Terr Phys 71:1602–1609

    Article  Google Scholar 

  • Emmert JT, Picone JM, Meier RR (2008) Thermospheric global average density trends 1967–2007, derived from orbits of 5000 near-Earth objects. Geophys Res Lett 35:L05101. doi:10.1029/2007GL032809

    Article  Google Scholar 

  • Garcia RR, Marsh DR, Kinnison DE, Boville BA, Sassi F (2007) Simulation of secular trends in the middle atmosphere, 1950–2003. J Geophys Res 112:D09301. doi:10.1029/2006JD007485

    Article  Google Scholar 

  • Holt JM, Zhang S-R (2008) Long-term temperature trends in the ionosphere above Millstone Hill. Geophys Res Lett 35:L05813. doi:10.1029/2007GL031148

    Article  Google Scholar 

  • Jacobi C, Hoffmann P, Kürschner D (2008) Trends in MLT region winds and planetary waves, Collm (52oN, 15oE). Ann Geophys 26:1221–1232

    Article  Google Scholar 

  • Jacobi C, Hoffmann P, Liu RQ, Križan P, Laštovička J, Merzlyakov EG, Solovjova TV, Portnyagin YuI (2009) Midlatitude mesopause region winds and wave sand comparison with stratospheric variability. J Atmos Solar-Terr Phys 71:1540–1546

    Article  Google Scholar 

  • Kirkwood S, Dalin P, Réchou A (2008) Noctilucent clouds observed from the UK and Denmark – trends and variations over 43 years. Ann Geophys 26:1243–1254

    Article  Google Scholar 

  • Kubicky A, Keckhut P, Chanin M-L, Golitsyn GS, Lysenko E (2008) Temperature trends in the middle atmosphere as seen by historical Russian rocket launches: part II, Heiss Island (80.6°N, 58°E). J Atmos Solar-Terr Phys 70:145–155

    Article  Google Scholar 

  • Laštovička J, Bremer J (2004) An overview of long-term trends in the lower ionosphere below 120 km. Surv Geophys 25:69–99

    Article  Google Scholar 

  • Laštovička J (2005) On the role of solar and geomagnetic activity in long-term trends in the atmosphere-ionosphere system. J Atmos Solar-Terr Phys 67:83–92

    Article  Google Scholar 

  • Laštovička J, Akmaev RA, Beig G, Bremer J, Emmert JT (2006a) Global change in the upper atmosphere. Science 314:1253–1254

    Article  Google Scholar 

  • Laštovička J, Akmaev RA, Beig G, Bremer J, Emmert JT, Jacobi C, Jarvis MJ, Nedoluha G, Portnyagin Y, Ulich T (2008a) Emerging pattern of global change in the upper atmosphere and ionosphere. Ann Geophys 26:1255–1268

    Article  Google Scholar 

  • Laštovička J, Križan P, Kozubek M (2010) Long-term trends in the middle atmosphere dynamics at northern middle latitudes – one regime or two different regimes? Atmos Chem Phys Discuss 10:2633–2668

    Google Scholar 

  • Laštovička J, Mikhailov AV, Ulich Th, Bremer J, Elias AG, Ortiz de Adler N, Jara V, Abarca del Rio R, Foppiano AJ, Ovalle, E, Danilov, AD (2006b) Long-term trends in foF2: a comparison of various methods. J Atmos Solar-Terr Phys 68:1854–1870

    Article  Google Scholar 

  • Laštovička J, Yue X, Wan, W (2008b) Long-term trends in foF2: their estimating and origin. Ann Geophys 26:593–598

    Article  Google Scholar 

  • Marsh D, Smith A, Woble E (2003) Mesospheric ozone response to changes in water vapour. J Geophys Res 108:4109. doi:10.1029/2002JD002705

    Article  Google Scholar 

  • Martini D, Mursula K (2008) Centennial geomagnetic activity studied by a new, reliable long-term index. J Atmos Solar-Terr Phys 70:1074–1087

    Article  Google Scholar 

  • McNamara LF (2008) Accuracy of models of hmF2 used for long-term trend analyses. Radio Sci 43:RS2002. doi:10.1029/2007RS003740

    Article  Google Scholar 

  • Merzlyakov EG, Jacobi Ch., Portnyagin YuI, Solovjova TV (2009) Structural changes in trend parameters of the MLT winds based on wind measurements at Obninsk (55°N, 37°E) and Collm (52°N, 15°E). J Atmos Solar-Terr Phys 71:1547–1557

    Article  Google Scholar 

  • Mikhailov AV (2002) The geomagnetic control concept of the F2-layer parameter long-term trends. Phys Chem Earth 27:595–606

    Google Scholar 

  • Mikhailov AV (2006) Ionospheric long-term trends: can the geomagnetic control and the greenhouse hypothesis be reconciled? Ann Geophys 24:2533–2541

    Article  Google Scholar 

  • Mikhailov AV, de la Morena BA (2003) Long-term trends of foE and geomagnetic activity variations. Ann Geophys 21:751–760

    Article  Google Scholar 

  • Mursula K, Martini D (2006) Centennial increase in geomagnetic activity: Latitudinal difference and global estimates. J Geophys Res 111:A08209. doi:10.1029/2005JA011549

    Article  Google Scholar 

  • Nedoluha GE, Bevilacqua RM, Gomez RM, Hicks BC, Russell JM III, Connor BJ (2003) An evaluation of trends in middle atmospheric water vapor as measured by HALOE, WVMS, and POAM. J Geophys Res 108:4391. doi:10.1029/2002JD003332

    Article  Google Scholar 

  • Oltmans SJ, Vömel H, Hofmann DJ, Rosenlof KH, Kley D (2000) The increase in stratospheric water vapor from balloonborne, frostpoint hygrometer measurements at Washington, D.C., and Boulder, Colorado. Geophys Res Lett 27:3453–3456

    Article  Google Scholar 

  • Portnyagin YuI, Merzlyakov EG, Solovjova TV, Jacobi Ch, Kürschner D, Manson A, Meek C (2006) Long-term trends and year-to-year variability of mid-latitude mesosphere/lower thermosphere winds. J Atmos Solar-Terr Phys 68:1890–1901

    Article  Google Scholar 

  • Qian L, Burns AG, Solomon SC, Roble RG (2009) The effect of carbon dioxide cooling on trends in the F2 layer ionosphere. J Atmos Solar-Terr Phys 71:1592–1601

    Article  Google Scholar 

  • Qian L, Solomon SC, Roble RG, Kane TJ (2008) Model simulations of global change in the ionosphere. Geophys Res Lett 35:L07811. doi:10.1029/2007GL033156

    Article  Google Scholar 

  • Reinsel GC, Miller AJ, Weatherhead EC, Flynn LE, Nagatani RM, Tiao GC, Wuebbles DJ (2005) Trend analysis of total ozone data for turnaround and dynamical contributions. J Geophys Res 110:D16306. doi:10.1029/2004JD004662

    Article  Google Scholar 

  • Remsberg EE (2009) Trends and solar cycle effects in temperatures versus altitude from the halogen occultation experiment for the mesosphere and upper stratosphere. J Geophys Res 114:D12303. doi:10.1029/2009JD011897

    Article  Google Scholar 

  • Rishbeth H (1990) A greenhouse effect in the ionosphere? Planet Space Sci 38:945–948

    Article  Google Scholar 

  • Rishbeth H, Roble RG (1992) Cooling of the upper atmosphere by enhanced greenhouse gases – modelling of thermospheric and ionospheric effects. Planet Space Sci 40:1011–1026

    Article  Google Scholar 

  • Roble RG, Dickinson RE (1989) How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and lower thermosphere? Geophys Res Lett16: 1441–1444

    Article  Google Scholar 

  • Scherer M, Vömel H, Fueglistaler S, Oltmans SJ, Staehelin J (2008) Trends and variability of midlatitude stratospheric water vapour deduced from the re-evaluated Boulder balloon series and HALOE. Atmos Chem Phys 8:1391–1402

    Article  Google Scholar 

  • Shettle PE, DeLand MT, Thomas GE, Olivero JJ (2009) Long term variations in the frequency of polar mesospheric clouds in the Northern Hemisphere from SBUV. Geophys Res Lett 36:L02803. doi:10.1029/2008GL036048

    Article  Google Scholar 

  • Weatherhead EC, Reinsel GC, Tiao GC et al (2000) Detecting the recovery of total column ozone. J Geophys Res 105:22201–22210

    Article  Google Scholar 

  • Yue X, Wan W, Liu L, Ning B, Zhao B (2006) Applying artificial neural network to derive long-term foF2 trends in Asia/Pacific sector from ionosonde observations. J Geophys Res 111:D22307. doi:10.1029/2005JA011577

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Grant Agency of the Czech Republic through grant P209/10/1792.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Laštovička .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Laštovička, J. (2011). Long-Term Trends in the Upper Atmosphere – Recent Progress. In: Abdu, M., Pancheva, D. (eds) Aeronomy of the Earth's Atmosphere and Ionosphere. IAGA Special Sopron Book Series, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0326-1_30

Download citation

Publish with us

Policies and ethics