Longitudinal Structure of the Mid- and Low-Latitude Ionosphere Observed by Space-borne GPS Receivers

  • C.H. LinEmail author
  • C.H. Chen
  • H.F. Tsai
  • C.H. Liu
  • J.Y. Liu
  • Y. Kakinami
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)


This study presents longitudinal structures of the mid- and low-latitude ionosphere using the GPS radio occultation observation on board the COSMIC satellite mission. The longitudinal structure seen in the equatorial and low-latitude ionospheric regions results from modification of the daily dynamo electric field by upward propagating atmospheric tides that are generated by latent heat release of the tropical rainstorms. Changes of the dynamo electric field modify the equatorial plasma fountain and thereby enhance the equatorial ionization anomaly (EIA). With capability of three-dimensional global ionospheric observation, altitudinal, local time, and monthly variations of this recent discovered fascinating feature are obtained for further understanding of the underlying physical mechanism. Through comparison between electron densities at various altitudes, the longitudinal structure is prominently seen at upper part of the ionosphere. Additionally, COSMIC observations provide three-dimensional structure of the Weddell Sea anomaly which is featured by the greater nighttime electron density than daytime. Not only occurring at the southern hemisphere near the Weddell Sea region of the Antarctica, a similar nighttime density enhancement feature is also found in the northern hemisphere during local summer by COSMIC observations. The anomalous signatures in both hemispheres share very similar characteristics in electron density structure, latitudinal distribution, and appearance time. They are, therefore, categorized as the mid-latitude summer nighttime anomaly (MSNA).


Total Electron Content Radio Occultation Longitudinal Structure Atmospheric Tide Equatorial Ionization Anomaly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is partially supported by the Taiwan National Science Council under NSC NSC 98-2111-M-006-003-MY2 and by NSPO under 98-NSPO(B)-IC-FA07-01(L) and 98-NSPO(B)-IC-FA07-01(V).


  1. Bellchambers WH, Piggott WR (1958) Ionospheric measurements made at Halley Bay. Nature 188:1596–1597CrossRefGoogle Scholar
  2. Burns AG, Zeng Z, Wang W, Lei J, Solomon SC, Richmond AD, Killen TL, Kuo Y-H (2008) The behavior of the F 2 peak ionosphere over the South Pacific at dusk during quiet summer condition from COSMIC data. J Geophys Res 113:A12305. doi:10.1029/2008JA013308Google Scholar
  3. Dudeney JR, Piggot WR (1978) Antarctic ionospheric research. In: Lanzerotti LJ, Park CG (eds) Upper atmosphere research in Antarctica. Antarctic Research Series, Washington, DC, pp 200–235Google Scholar
  4. England SL, Maus S, Immel TJ, Mende SB (2006) Longitudinal variation of the E-region electric fields caused by atmospheric tides. Geophys Res Lett 33:L21105. http://doi:10.1029/2006GL027465 CrossRefGoogle Scholar
  5. Forbes JM, Russell J, Miyahara S, Zhang X, Palo S, Mlynczak M, Mertens CJ, Hagan ME (2006) Troposphere-thermosphere tidal coupling as measured by the SABER instrument on TIMED during July –September 2002. J Geophys Res 111:A10S06. http://doi:10.1029/2005JA011492 CrossRefGoogle Scholar
  6. Forbes JM, Zhang X, Palo S, Russell J, Mertens CJ, Mlynczak M (2008) Tidal variability in the ionospheric dynamo region. J Geophys Res 113:A02310. http://doi:10.1029/2007JA012737 CrossRefGoogle Scholar
  7. Hagan ME, Maute A, Roble RG, Richmond AD, Immel TJ, England SL (2007) Connections between deep tropical clouds and the Earth’s ionosphere. Geophys Res Lett 34:L20109. http://doi:10.1029/2007GL030142 CrossRefGoogle Scholar
  8. Hajj GA, Lee LC, Pi X, Romans LJ, Schreiner WS, Straus PR, Wang CM (2000) COSMIC GPS ionospheric sensing and space weather. Terr Atmos Oceanic Sci 11(1):235–273Google Scholar
  9. Horvath I, Essex EA (2003) The Weddell sea anomaly observed with the Topex satellite data. J Atmos Solar-Terr Phys 65;693–706CrossRefGoogle Scholar
  10. Immel TJ, Sagawa E, England SL, Henderson SB, Hagan ME, Mende SB, Frey HU, Swenson CM, Paxton LJ (2006) Control of equatorial ionospheric morphology by atmospheric tides. Geophys Res Lett 33:L15108. http://doi:10.1029/2006GL026161 CrossRefGoogle Scholar
  11. Jee G, Burns AG, Kim Y-H, Wang W (2009) Seasonal and solar activity variations of the Weddell Sea Anomaly observed in the TOPEX total electron content measurements. J Geophys Res 114:A04307. http://doi:10.1029/2008JA013801 CrossRefGoogle Scholar
  12. Kohl H, King JW (1967) Atmospheric winds between 100 and 700 km and their effects on the ionosphere. J Atmos Solar-Terr Phys 29:1045–1062CrossRefGoogle Scholar
  13. Lei J, Syndergaard S, Burns AG, Solomon SC, Wang W, Roble RG, Wu Q et al (2007) Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: preliminary results. J Geophys Res 112:A07308. http://doi:10.1029/2006JA012240 CrossRefGoogle Scholar
  14. Lin CH, Liu JY, Cheng CZ, Chen CH, Liu CH, Wang W, Burns AG, Lei J (2009) Three-dimensional ionospheric electron density structure of the Weddell Sea Anomaly. J Geophys Res 114:A02312. http://doi:10.1029/2008JA013455 CrossRefGoogle Scholar
  15. Lin CH, Liu JY, Fang TW, Chang PY, Tsai HF, Chen CH, Hsiao CC (2007a) Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC. Geophys Res Lett 34:L19101. http://doi:10.1029/2007GL030741 CrossRefGoogle Scholar
  16. Lin CH, Wang WB, Hagan ME, Hsiao CC, Immel TJ, Hsu ML, Liu JY, Paxton LJ, Fang TW, Liu CH (2007b) Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: three-dimensional electron density structures. Geophys Res Lett 34:L11112. http://doi:10.1029/2007GL029265 CrossRefGoogle Scholar
  17. Lin CH, Hsiao CC, Liu JY, Liu CH (2007c) Longitudinal structure of the equatorial ionosphere: time evolution of the four-peaked EIA structure. J Geophys Res 112:A12305. http://doi:10.1029/2007JA012455 CrossRefGoogle Scholar
  18. Lin CH, Liu JY, Cheng CZ, Chen CH, Liu CH, Wang W, Burns AG, Lei J (2009) Three-dimensional ionospheric electron density structure of the Weddell Sea Anomaly. Geophys Res Lett 114:A02312. doi:10.1029/2008JA013455Google Scholar
  19. Lin CH, Liu CH, Liu JY, Chen CH, Burns AG, Wang W (2010) Midlatitude summer nighttime anomaly of the ionospheric electron density observed by FORMOSAT-3/COSMIC. J Geophys Res 115:A03308. http://doi:10.1029/2009JA014084 CrossRefGoogle Scholar
  20. Liu JY, Lin CY, Lin CH, Tsai HF, Solomon SC, Sun YY, Lee IT, Schreiner W, Kuo YH (2010) Artificial plasma cave in the low-latitude ionosphere results from the radio occultation inversion of the FORMOSAT-3/COSMIC. J Geophys Res 115:A07319. doi:10.1029/2009JA015079Google Scholar
  21. Liu H, Thampi SV, Yamamoto M (2010) Anomalous phase reversal of the diurnal cycle in the mid-latitude ionosphere. J Geophys Res 115:A01305. http://doi:10.1029/2009JA014689 CrossRefGoogle Scholar
  22. Lühr H, Rother M, Ha¨usler K, Alken P, Maus S (2008) The influence of nonmigrating tides on the longitudinal variation of the equatorial electrojet. J Geophys Res 113:A08313. http://doi:10.1029/2008JA013064 CrossRefGoogle Scholar
  23. Oberheide J, Forbes JM (2008) Tidal propagation of deep tropical cloud signatures into the thermosphere from TIMED observations. Geophys Res Lett 35:L04816. http://doi:10.1029/2007GL032397 CrossRefGoogle Scholar
  24. Oberheide J, Hagan ME, Roble RG, Offermann D (2002) Sources of nonmigratingtides in the tropical middle atmosphere.J Geophys Res 107(D21):4567. http://doi:10.1029/2002JD002220 CrossRefGoogle Scholar
  25. Penndorf R (1965) The average ionospheric conditions over the Antarctic. In: Waynick AH (ed) Geomagnetism and aeronomy, vol 4. Antarctic Research Series. AGU, Washington, DC, [pp 1–45Google Scholar
  26. Rishbeth H, Garriott OK (1969) Introduction to ionospheric physics. Academic, New York, NYGoogle Scholar
  27. Sagawa E, Immel TJ, Frey HU, Mende SB (2005), Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV. Geophys Res Lett 110:A11302. doi:10.1029/2004JA010848Google Scholar
  28. Scherliess L, Thompson DC, Schunk RW (2008) Longitudinal variability of low-latitude total electron content: tidal influences. J Geophys Res 113:A01311. http://doi:10.1029/2007JA012480 CrossRefGoogle Scholar
  29. Schreiner W, Rocken C, Sokolovskiy S, Syndergaard S, Hunt D (2007) Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission. Geophys Res Lett 34:L04808. http://doi:10.1029/2006GL027557 CrossRefGoogle Scholar
  30. Schreiner WS, Sokolovskiy SV, Rocken C, Hunt DC (1999) Analysis and validation of GPS/MET radio occultation data in the ionosphere. Radio Science 34:949–966CrossRefGoogle Scholar
  31. Thampi SV, Lin CH, Liu H, Yamamoto M (2009) First tomographic observations of the Mid-latitude Summer Nighttime Anomaly (MSNA) over Japan. J Geophys Res 114:A10318. http://doi:10.1029/2009JA014439 CrossRefGoogle Scholar
  32. Wu Q, Solomon SC, Kuo Y-H, Killeen TL, Xu J (2009) Spectral analysis of ionospheric electron density and mesospheric neutral wind diurnal nonmigrating tides observed by COSMIC and TIMED satellites. Geophys Res Lett 36:L14102. http://doi:10.1029/2009GL038933 CrossRefGoogle Scholar
  33. Yue X, Schreiner WS, Lei J, Sokolovskiy SV, Rocken C, Hunt DC, Kuo Y-H (2010) Error analysis of Abel retrieved electron density profiles from radio occultation measurements. Ann Geophys 28:217–222CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • C.H. Lin
    • 1
    • 2
    Email author
  • C.H. Chen
    • 3
  • H.F. Tsai
    • 4
  • C.H. Liu
    • 5
  • J.Y. Liu
    • 6
  • Y. Kakinami
    • 1
    • 6
  1. 1.Department of Earth ScienceNational Cheng Kung UniversityTainanTaiwan
  2. 2.Earth Dynamic System Research CenterNational Cheng Kung UniversityTainanTaiwan
  3. 3.Department of GeophysicsGraduate School of Science, Kyoto UniversityKyotoJapan
  4. 4.Central Weather BureauTaipeiTaiwan
  5. 5.Acedemia SinicaTaipeiTaiwan
  6. 6.Institute of Space Science, National Central UniversityChung-LiTaiwan

Personalised recommendations