Causal Link of Longitudinal Plasma Density Structure to Vertical Plasma Drift and Atmospheric Tides – A Review

  • Hyosub KilEmail author
  • Larry J. Paxton
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)


This chapter reviews recent advances in our understanding of the characteristics and driving mechanisms of the longitudinal plasma density structure in the low-latitude F region. Various ionospheric observations have shown the development of a longitudinal wave-like pattern in plasma density. Typically, the wave number-4 (wave-4) pattern is pronounced during July–September, and the wave-3 pattern is pronounced during December–January. Variation of the longitudinal plasma density pattern with local time and season is causally linked to vertical plasma drift in the F region (or E-region dynamo electric fields). The wave-4 pattern is of special interest to the ionosphere-thermosphere community because this phenomenon is closely associated with the diurnal eastward propagating zonal wave number 3 tide (DE3). This idea is supported by observations of annual variation of the DE3 amplitude and diurnal variation of the DE3 phase that are consistent with the annual and diurnal variations of the wave-4 patterns in plasma density and dynamo electric fields. The connection of the ionospheric wave-3 pattern presumably to the diurnal eastward propagating zonal wave number 2 tide (DE2) further demonstrates the significant role of atmospheric tides in the formation of large-scale ionospheric structures. Formation of the large-scale longitudinal structures of the ionosphere is attributed to the modulation of the E-region dynamo electric fields by atmospheric tides, but recent studies indicate that the ionosphere and thermosphere can be directly modulated by the penetration of atmospheric tides into the F-region height.


Plasma Density Total Electron Content Neutral Wind Atmospheric Tide Defense Meteorological Satellite Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



H. Kil and L. J. Paxton acknowledge support from NASA Grant NNX08AQ12G and NASA TIMED Program GUVI Grant NAG5-11412.


  1. Alken P, Maus S (2007) Spatio-temporal characterization of the equatorial electrojet from CHAMP, Ørsted, and SAC-C satellite measurements. J Geophys Res 112:A09305. http://doi:10.1029/2007JA012524
  2. Benkova NP, Deminov MG, Karpachev AT, Kochenova NA, Kusnerevsky YuV, Migulin VV, Pulinets SA, Fligel MD (1990) Longitude features shown by topside sounder data and their importance in ionospheric mapping. Adv Space Res 10:857–866Google Scholar
  3. Chapman S, Lindzen RS (1970) Atmospheric tides. Gordon and Breach, New York, NYGoogle Scholar
  4. England SL, Immel TJ, Sagawa E, Henderson SB, Hagan ME, Mende SB, Frey HU, Swenson CM, Paxton LJ (2006a) The effect of atmospheric tides on the morphology of the quiet-time post-sunset equatorial ionospheric anomaly. J Geophys Res 111:A10S19. http://doi:10.1029/2006JA011795
  5. England SL, Maus S, Immel TJ, Mende SB (2006b) Longitudinal variation of the E-region electric fields caused by atmospheric tides. Geophys Res Lett 33:L21105. http://doi:10.1029/2006GL027465
  6. England SL, Zhang X, Immel TJ, Forbes JM, DeMajistre R (2009) The effect of non-migrating tides on the morphology of the equatorial ionospheric anomaly: seasonal variability. Earth Planets Space 61:493–503Google Scholar
  7. Fang T-W, Kil H, Millward G, Richmond AD, Liu JY, Oh S-J (2009) Causal link of the wave-4 structures in plasma density and vertical plasma drift in the low-latitude ionosphere. J Geophys Res 114:A10315. http://doi:10.1029/2009JA014460
  8. Fejer BG, de Paula ER, Gonzalez SA, Woodman RF (1991) Average vertical and zonal F region plasma drifts over Jicamarca. J Geophys Res 96;13,901–13,906Google Scholar
  9. Fejer BG, Jensen JW, Su S-Y (2008) Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations. J Geophys Res 113:A05304. http://doi:10.1029/2007JA012801
  10. Forbes JM, Bruinsma SL, Zhang X, Oberheide J (2009) Surface-exosphere coupling due to thermal tides. Geophys Res Lett 36:L15812. http://doi:10.1029/2009GL038748
  11. Forbes JM, Groves GV (1987) Diurnal propagating tides in the low-latitude middle atmosphere. J Atmos Solar-Terr Phys 49:153–164CrossRefGoogle Scholar
  12. Forbes JM, Russell MJ, Miyahara S, Zhang X, Palo S, Mlynczak M, Mertens CJ (2006) Troposphere-thermosphere tidal coupling as measured by the SABER instrument on TIMED during July–September 2002. J Geophys Res 111:A10S06. http://doi:10.1029/2005JA011492
  13. Forbes JM, Zhang X, Palo S, Russell J, Mertens CJ, Mlynczak M (2008) Tidal variability in the ionospheric dynamo region. J Geophys Res 113:A02310. http://doi:10.1029/2007JA012737
  14. Forbes JM, Zhang X, Talaat ER, Ward W (2003) Nonmigrating diurnal tides in the thermosphere. J Geophys Res 108(A1):1033. http://doi:10.1029/2002JA009262 Google Scholar
  15. Hagan ME, Forbes JM (2002) Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J Geophys Res 107(D24):4754. http://doi:10.1029/2001JD001236 Google Scholar
  16. Hagan ME, Maute A, Roble RG, Richmond AD, Immel TJ, England SL (2007) Connections between deep tropical clouds and the Earth’s ionosphere. Geophys Res Lett 34:L20109. http://doi:10.1029/2007GL030142
  17. Hartman WA, Heelis RA (2007) Longitudinal variations in the equatorial vertical drift in the topside ionosphere. J Geophys Res 112:A03305. http://doi:10.1029/2006JA011773
  18. Häusler K, Lühr H (2009) Nonmigrating tidal signals in the upper thermospheric zonal wind at equatorial latitudes as observed by CHAMP. Ann Geophys 27:2643–2652CrossRefGoogle Scholar
  19. Heelis RA (2004) Electrodynamics in the low and middle latitude ionosphere: a tutorial. J Atmos Solar-Terr Phys 66:825–838CrossRefGoogle Scholar
  20. Henderson SB, Swenson CM, Christensen AB, Paxton LJ (2005) Morphology of the equatorial anomaly and equatorial plasma bubbles using image subspace analysis of Global Ultraviolet Imager data. J Geophys Res 110:A11306. http://doi:10.1029/2005JA011080
  21. Huba JD, Joyce DG, Fedder JA (2000) Sami2 is another model of the ionosphere (SAMI2): a new low-latitude ionosphere model. J Geophys Res 105:23,035–23,053CrossRefGoogle Scholar
  22. Immel TJ, England S, Zhang X, Forbes JM, DeMajistre R (2009) Upward propagating tidal effects across the E- and F-regions of the ionosphere. Earth Planets Space 61:505–512Google Scholar
  23. Immel TJ, Sagawa E, England SL, Henderson SB, Hagan ME, Mende SB, Frey HU, Swenson CM, Paxton LJ (2006) Control of equatorial ionospheric morphology by atmospheric tides. Geophys Res Lett 33:L15108. http://doi:10.1029/2006GL026161
  24. Ivers D, Stening R, Turner J, Winch D (2003) Equatorial electrojet from Ørsted scalar magnetic field observations. J Geophys Res 108(A2):1061. http://doi:10.1029/2002JA009310 Google Scholar
  25. Jadhav G, Rajaram M, Rajaram R (2002) A detailed study of equatorial electrojet phenomenon using Ørsted satellite observations. J Geophys Res 107(A8):1175. http://doi:10.1029/2001JA000183 Google Scholar
  26. Jin H, Miyoshi Y, Fujiwara H, Shinagawa H (2008) Electrodynamics of the formation of ionospheric wave number 4 longitudinal structure. J Geophys Res 113:A09307. http://doi:10.1029/2008JA013301
  27. Karpachev AT (1988) Characteristics of the global longitudinal effect in the night-time equatorial anomaly. Geomagn Aeronomy 28(1):46–49Google Scholar
  28. Kato S (1989) Non-migrating tides. J Atmos Solar-Terr Phys 51:673–682CrossRefGoogle Scholar
  29. Kato S, Tsuda T, Watanabe F (1982) Thermal excitation of nonmigrating tides. J Atmos Solar-Terr Phys 44:131–146CrossRefGoogle Scholar
  30. Kelley MC (1989) The Earth’s ionosphere. Academic, San Diego, CAGoogle Scholar
  31. Kil H, DeMajistre R, Paxton LJ, Zhang Y (2006) Nighttime F-region morphology in the low and middle latitudes seen from DMSP F15 and TIMED/GUVI. J Atmos Solar-Terr Phys 68:1672–1681CrossRefGoogle Scholar
  32. Kil H, Oh S-J, Kelley MC, Paxton LJ, England SL, Talaat ER, Min K-W, Su S-Y (2007) Longitudinal structure of the vertical E × B drift and ion density seen from ROCSAT-1. Geophys Res Lett 34:L14110. http://doi:10.1029/2007GL030018
  33. Kil H, Oh S-J, Paxton LJ, Fang T-W (2009b) High-resolution vertical drift model driven from the ROCSAT-1 data. J Geophys Res 114:A10. http://doi:10.1029/2009JA014324
  34. Kil H, Paxton LJ, Oh S-J (2009a) Global bubble distribution seen from ROCSAT-1 and its association with the pre-reversal enhancement. J Geophys Res 114:A06307. http://doi:10.1029/2008JA013672
  35. Kil H, Talaat ER, Oh S-J, Paxton LJ, England SL, Su S-Y (2008) The wave structures of the plasma density and vertical E × B drift in low-latitude F region. J Geophys Res 113:A09312. http://doi:10.1029/2008JA013106
  36. Kochenova NA (1987) Longitudinal variations of the equatorial ionosphere according to Intercosmos-19 data. Geomagn Aeronomy 21(1):142–144Google Scholar
  37. Kochenova NA (1988) Longitudinal variations of N(h) profiles at the magnetic equator. Geomagn Aeronomy 28(1):144–146Google Scholar
  38. Lin CH, Wang W, Hagan ME, Hsiao CC, Immel TJ, Hsu ML, Liu JY, Paxton LJ, Fang TW, Liu CH (2007a) Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: three-dimensional electron density structures. Geophys Res Lett 34:L11112. http://doi:10.1029/2007GL029265
  39. Lin CH, Hsiao CC, Liu JY, Liu CH (2007b) Longitudinal structure of the equatorial ionosphere: time evolution of the four-peaked EIA structure. J Geophys Res 112:A12305. http://doi:10.1029/2007JA012455
  40. Lindzen RS (1967) Thermally driven diurnal tide in the atmosphere. Q J R Met Soc 93:18–42CrossRefGoogle Scholar
  41. Liu G, Immel TJ, England SL, Kumar KK, Ramkumar R (2010) Temporal modulations of the longitudinal structure in F2 peak height in the equatorial ionosphere as observed by COSMIC. J Geophys Res 115:A04303. http://doi:10.1029/2009JA014829
  42. Liu H, Watanabe S (2008) Seasonal variation of the longitudinal structure of the equatorial ionosphere: does it reflect tidal influences from below? J Geophys Res 113:A08315. http://doi:10.1029/2008JA013027
  43. Liu H, Yamamoto M, Lühr H (2009) Wave-4 pattern of the equatorial mass density anomaly: a thermospheric signature of tropical deep convection. Geophys Res Lett 36:L18104. http://doi:10.1029/2009GL039865
  44. Lühr H, Häusler K, Stolle C (2007) Longitudinal variation of F region electron density and thermospheric zonal wind caused by atmospheric tides. Geophys Res Lett 34:L16102. http://doi:10.1029/2007GL030639
  45. Lühr H, Rother M, Häusler K, Alken P, Maus S (2008) Influence of nonmigrating tides on the longitudinal variation of the equatorial electrojet. J Geophys Res 113:A08313. http://doi:10.1029/2008JA013064
  46. Millward GH, Muller-Wodarg ICF, Aylward AD, Fuller-Rowell TJ, Richmond AD, Moffett RJ (2001) An investigation into the influence of tidal forcing on F-region equatorial vertical ion drift using a global ionosphere-thermosphere model with coupled electrodynamics. J Geophys Res 106:24,733–24,744CrossRefGoogle Scholar
  47. Oberheide J, Forbes JM (2008a) Tidal propagation of deep tropical cloud signatures into the thermosphere. Geophys Res Lett 35:L04816. http://doi:10.1029/2007GL032397
  48. Oberheide J, Forbes JM (2008b) Thermospheric nitric oxide variability induced by nonmigrating tides. Geophys Res Lett 35:L16814. http://doi:10.1029/2008GL034825
  49. Oberheide J, Wu Q, Killeen TL, Hagan ME, Roble RG (2006) Diurnal nonmigrating tides from TIMED Doppler Interferometer wind data: monthly climatologies and seasonal variations. J Geophys Res 111:A10S03. http://doi:10.1029/2005JA011491
  50. Oh S-J, Kil H, Kim W-T, Paxton LJ, Kim YH (2008) The role of the vertical E × B drift for the formation of the longitudinal plasma density structure in the low-latitude F region. Ann Geophys 26:2061–2067CrossRefGoogle Scholar
  51. Pedatella NM, Forbes JM, Oberheide J (2008) Intra-annual variability of the low-latitude ionosphere due to nonmigrating tides. Geophys Res Lett 35:L18104. http://doi:10.1029/2008GL035332
  52. Ren Z, Wan W, Liu L, Heelis RA, Zhao B, Wei Y, Yue X (2009a) Influences of geomagnetic fields on longitudinal variations of vertical plasma drifts in the presunset equatorial topside ionosphere. J Geophys Res 114:A03305. http://doi:10.1029/2008JA013675
  53. Ren Z, Wan W, Liu L, Xiong J (2009b) Intra-annual variation of wavenumber-4 structure of vertical E × B drifts in the equatorial ionosphere seen from ROCSAT-1. J Geophys Res 114:A5. http://doi:10.1029/2009JA014060
  54. Ren Z, Wan W, Liu L, Zhao B, Wei Y, Yue X, Heelis RA (2008) Longitudinal variations of electron temperature and total ion density in the sunset equatorial topside ionosphere. Geophys Res Lett 35:L05108. http://doi:10.1029/2007GL032998
  55. Ren Z, Wan W, Xiong J, Liu L (2010) Simulated wave number 4 structure in equatorial F-region vertical plasma drifts. J Geophys Res 115:A05301. http://doi:10.1029/2009JA014746
  56. Sagawa E, Immel TJ, Frey HU, Mende SB (2005) Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV. J Geophys Res 110:A11302. http://doi:10.1029/2004JA010848
  57. Scherliess L, Thompson DC, Schunk RW (2008) Longitudinal variability of low-latitude total electron content: tidal influences. J Geophys Res 113:A01311. http://doi:10.1029/2007JA012480
  58. Su YZ, Bailey GJ, Oyama KI, Balan N (1997) A modeling study of the longitudinal variations in the north-south asymmetries of the ionospheric equatorial anomaly. J Atmos Solar-Terr Phys 59:1299–1310CrossRefGoogle Scholar
  59. Su S-Y, Chao CK, Liu CH (2008) On monthly/seasonal/longitudinal variations of equatorial irregularity occurrences and their relationship with the post-sunset vertical drift velocities. J Geophys Res 113:A05307. http://doi:10.1029/2007JA012809
  60. Talaat ER, Lieberman RS (1999) Nonmigrating diurnal tides in the mesosphere and lower thermosphere. J Atmos Sci 56:4073–4087CrossRefGoogle Scholar
  61. Talaat ER, Lieberman RS (2010) Direct observations of nonmigrating diurnal tides in the equatorial thermosphere. Geophys Res Lett 37:L04803. http://doi:10.1029/2009GL041845
  62. Thuillier G, Wiens JRH, Shepered GG, Roble RG (2002) Photochemistry and dynamics in thermospheric intertropical arcs measure by the WIND imaging interferometer on board UARS: a comparison with TIE-GCM simulations. J Atmos Solar-Terr Phys 64:405–415CrossRefGoogle Scholar
  63. Wan W, Liu L, Pi X, Zhang M-L, Ning B, Xiong J, Ding F (2008) Wavenumber-4 patterns of the total electron content over the low latitude ionosphere. Geophys Res Lett 35:L12104. http://doi:10.1029/2008GL033755
  64. West KH, Heelis RA (1996) Longitude variations in ion composition in the morning and evening topside equatorial ionosphere near solar minimum. J Geophys Res 101:7951–7960CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Applied Physics LaboratoryThe Johns Hopkins UniversityLaurelUSA

Personalised recommendations