Longitudinal Variations of the Thermospheric Zonal Wind Induced by Nonmigrating Tides as Observed by CHAMP

  • Kathrin HäuslerEmail author
  • Hermann Lühr
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)


In July 2000 the very successful German mini-satellite mission CHAMP, an acronym for Challenging Minisatellite Payload, was launched. One of the scientific instruments on board is an accelerometer that allows us to derive the zonal wind at CHAMP’s altitude (~ 400 km). Previous to its launch, continuous and globally distributed measurements of the upper thermospheric wind have been rather sparse. With the launch of the CHAMP satellite we are now able to investigate the upper thermospheric zonal wind, and in particular its longitudinal variability, in a climatological sense. This capability has led to exciting and unanticipated findings such as the coupling from the troposphere to the thermosphere via nonmigrating tides. In this chapter we talk about the longitudinal variations of the CHAMP zonal wind at equatorial latitudes. Further, we present the nonmigrating tidal spectra embedded in the CHAMP zonal wind with special emphasis on the eastward propagating diurnal tide with zonal wavenumber 3 (DE3).


Zonal Wind Longitudinal Variation Diurnal Tide Magnetic Equator Semidiurnal Tide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Jens Oberheide, Maura Hagan, and Astrid Maute for fruitful discussions on the topic. K.H. is supported by the Deutsche Forschungsgemeinschaft (DFG) through its Priority Program CAWSES (SPP1176).


  1. Chapman S, Lindzen RS (1970) Atmospheric tides: thermal and gravitational. D. Reidel Publishing Company, Dordrecht, HollandGoogle Scholar
  2. England SL, Maus S, Immel TJ, Mende SB (2006) Longitude variation of the E-region electric fields caused by atmospheric tides. Geophys Res Lett 33:L21105. http://doi:10.1029/2006GL027465 CrossRefGoogle Scholar
  3. Forbes JM (1995) Tidal and planetary waves. In: Johnson RM, Killeen TL (eds) The upper mesosphere and lower thermosphere: a review of experiment and theory. Geophysical Monograph Series, vol 87. AGU, Washington, DCGoogle Scholar
  4. Forbes JM, Russell J, Miyahara S, Zhang X, Palo S, Mlynczak M, Mertens CJ, Hagan ME (2006) Troposphere-thermosphere tidal coupling as measured by the SABER instrument on TIMED during July–September 2002. J Geophys Res 111:A10S06. http://doi:10.1029/2005JA011492 CrossRefGoogle Scholar
  5. Forbes JM, Zhang X, Talaat ER, Ward W (2003) Nonmigrating diurnal tides in the thermosphere. J Geophys Res 108(A1):1033. http://doi:10.1029/2002JA009262 CrossRefGoogle Scholar
  6. Hagan ME, Forbes JM (2002) Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J Geophys Res 107(D24):4754. http://doi:10.1029/2002JD001236 CrossRefGoogle Scholar
  7. Hagan ME, Forbes JM (2003) Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release. J Geophys Res 108(A2):1062. http://doi:10.1029/2002JA009466 CrossRefGoogle Scholar
  8. Hagan ME, Maute A, Roble RG (2009) Tropospheric tidal effects on the middle and upper atmosphere. J Geophys Res 114:A01302. http://doi:10.1029/2008JA013637 CrossRefGoogle Scholar
  9. Hagan ME, Maute A, Roble RG, Richmond AD, Immel TJ, England SL (2007) Connections between deep tropical clouds and the Earth’s ionosphere. Geophys Res Lett 34:L20109. http://doi:10.1029/2007GL030142 CrossRefGoogle Scholar
  10. Hagan ME, Roble RG (2001) Modeling the diurnal tidal variability with the National Center for Atmospheric Research thermosphere-ionosphere-mesosphere-electrodynamics general circulation model. J Geophys Res 106(A11):24869–24882CrossRefGoogle Scholar
  11. Hartman WA, Heelis RA (2007) Longitudinal variations in the equatorial vertical drift in the topside ionosphere. J Geophys Res 112:A03305. http://doi:10.1029/2006JA011773 CrossRefGoogle Scholar
  12. Häusler K, Lühr H (2009) Nonmigrating tidal signals in the upper thermospheric zonal wind at equatorial latitudes as observed by CHAMP. Ann Geophys 27:2643–2652. URL Google Scholar
  13. Häusler K, Lühr H, Hagan ME, Maute A, Roble RG (2010) Comparison of CHAMP and TIME-GCM nonmigrating tidal signals in the thermospheric zonal wind. J Geophys Res 115:D00I08. http://doi:10.1029/2009JD012394 CrossRefGoogle Scholar
  14. Häusler K, Lühr H, Rentz S, Köhler W (2007) A statistical analysis of longitudinal dependences of upper thermospheric zonal winds at dip equator latitudes derived from CHAMP. J Atmos Solar-Terr Phys 69:1419–1430. http://doi:10.1016/j.jastp.2007.04.004 CrossRefGoogle Scholar
  15. Immel TJ, Sagawa E, England SL, Henderson SB, Hagan ME, Mende SB, Frey HU, Swenson CM, Paxton LJ (2006) Control of equatorial ionospheric morphology by atmospheric tides. Geophys Res Lett 33:L15108. http://doi:10.1029/2006GL026161 CrossRefGoogle Scholar
  16. Kil H, Oh SJ, Kelley MC, Paxton LJ, England SL, Talaat ER, Min KW, Su SY (2007) Longitudinal structure of the vertical ExB drift and ion density seen from ROCSAT-1. Geophys Res Lett 34:L14110. http://doi:10.1029/2007GL030018 CrossRefGoogle Scholar
  17. Lin CH, Wang W, Hagan ME, Hsiao CC, Immel TJ, Hsu ML, Liu JY, Paxton LJ, Fang TW, Liu CH (2007) Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: three-dimensional electron density structures. Geophys Res Lett 34:L11112. http://doi:10.1029/2007GL029265 CrossRefGoogle Scholar
  18. Liu H, Lühr H, Watanabe S, Köhler W, Henize V, Visser P (2006) Zonal winds in the equatorial upper thermosphere: decomposing the solar flux, geomagnetic activity, and seasonal dependencies. J Geophys Res 111:A07307. http://doi:10.1029/2005JA011415 CrossRefGoogle Scholar
  19. Lühr H, Häusler K, Stolle C (2007) Longitudinal variation of F region electron density and thermospheric zonal wind caused by atmospheric tides. Geophys Res Lett 34:L16102. http://doi:10.1029/2007GL030639 CrossRefGoogle Scholar
  20. Lühr H, Rother M, Häusler K, Alken P, Maus S (2008) The influence of nonmigrating tides on the longitudinal variation of the equatorial electrojet. J Geophys Res 113:A08313. http://doi:10.1029/2008JA013064 CrossRefGoogle Scholar
  21. McLandress C, Ward WE (1994) Tidal/gravity wave interactions and their influence on the large-scale dynamics of the middle atmosphere: model results. J Geophys Res 99:8139–8155CrossRefGoogle Scholar
  22. Oberheide J, Forbes JM (2008a) Tidal propagation of deep tropical cloud signatures into the thermosphere from TIMED observations. Geophys Res Lett 35:L04816. http://doi:10.1029/2007GL032397 CrossRefGoogle Scholar
  23. Oberheide J, Forbes JM (2008b) Thermospheric nitric oxide variability induced by nonmigrating tides. Geophys Res Lett 35:L16814. http://doi:10.1029/2008GL034825 CrossRefGoogle Scholar
  24. Oberheide J, Forbes JM, Häusler K, Wu Q, Bruinsma SL (2009) Tropospheric tides from 80 to 400 km: propagation, inter-annual variability and solar cycle effects. J Geophys Res 114:D00I05. http://doi:10.1029/2009JD012388 CrossRefGoogle Scholar
  25. Oberheide J, Hagan ME, Roble RG, Offermann D (2002) Sources of nonmigrating tides in the tropical middle atmosphere. J Geophys Res 107(D21):4567. http://doi:10.1029/2002JD002220 CrossRefGoogle Scholar
  26. Pedatella NM, Forbes JM, Oberheide J (2008) Intra-annual variability of the low-latitude ionosphere due to nonmigrating tides. Geophys Res Lett 35:L18104. http://doi:10.1029/2008GL035332 CrossRefGoogle Scholar
  27. Reigber C, Lühr H, Schwintzer P (eds) (2003) First CHAMP Mission results for gravity, magnetic and atmospheric studies. Springer, LondonGoogle Scholar
  28. Reigber C, Lühr H, Schwintzer P, Wickert J (eds) (2005) Earth observation with CHAMP – results from three years in orbit. Springer, LondonGoogle Scholar
  29. Roble RG (1995) Energetics of the mesosphere and thermosphere. In: Johnson RM, Killeen TL (eds) The upper mesosphere and lower thermosphere: a review of experiment and theory. Geophysical Monograph Series, vol 87. AGU, Washington, DC, pp 1–21Google Scholar
  30. Roble RG (1996) The NCAR thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). In: Schunk RW (ed) STEP handbook on ionospheric models. Utah State University, Logan, UT, pp 281–288Google Scholar
  31. Roble RG, Ridley EC (1994) A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): equinox solar cycle minimum simulations (30–500 km). Geophys Res Lett 21:417–420. http://doi:10.1029/93GL03391 CrossRefGoogle Scholar
  32. Sagawa E, Immel TJ, Frey HU, Mende SB (2005) Longitudinal structure of the equatorial anomaly observed by IMAGE/FUV. J Geophys Res 110:A11302. http://doi:10.1029/2004JA010848 CrossRefGoogle Scholar
  33. Visser PNAM, IJssel J van den (2003) Verification of CHAMP accelerometer observations. Adv Space Res 31:1905–1910. http://doi:10.1016/S0273-1177(03)00165-0

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.GFZ German Research Centre for Geosciences, TelegrafenbergPotsdamGermany
  2. 2.Helmholtz Centre PotsdamGFZ German Research Centre for GeosciencesPotsdamGermany

Personalised recommendations