Advertisement

Characteristics of Temperature and Density Structures in the Equatorial Thermosphere Simulated by a Whole Atmosphere GCM

  • Hitoshi FujiwaraEmail author
  • Yasunobu Miyoshi
  • Hidekatsu Jin
  • Hiroyuki Shinagawa
  • Kaori Terada
Chapter
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)

Abstract

Numerical simulations of the thermospheric temperature and mass density variations have been performed with a whole atmosphere general circulation model (GCM) which includes all the atmospheric regions: troposphere, stratosphere, mesosphere, and thermosphere. The GCM simulations represent hour-to-hour variations of the thermosphere due to effects from the lower atmosphere. The GCM also reproduces some characteristics of the thermospheric temperature and density structures: e.g., the midnight temperature maximum (MTM) and midnight density maximum (MDM) in the equatorial upper thermosphere. The MTMs and MDMs simulated here have the maximum amplitudes of 73 K and 19%, respectively, which are consistent with previous observations. The MTMs and MDMs simulated by the GCM also vary from hour to hour. The amplitude and location of the MTM depend on UT or longitude. In the dayside of the low-latitude region, the double-hump structure of the mass density is also seen in the GCM results. The lower atmospheric effects on the thermosphere would be important for generation of the mass density structure.

Keywords

General Circulation Model General Circulation Model Simulation Atmosphere General Circulation Model Constant Pressure Surface Champ Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported in part by Grant-in-Aid for Scientific Research C (20540435) and Scientific Research on Innovative Areas (20200047), and the Global COE program “Global Education and Research Center for Earth and Planetary Dynamics” at Tohoku University by the Ministry of Education, Science, Sports and Culture, Japan. A part of this work was also supported by the joint research program of the Solar-Terrestrial Environment Laboratory, Nagoya University.

References

  1. Akmaev RA, Wu F, Fuller-Rowell TJ, Wang H (2009) Midnight temperature maximum (MTM) in Whole Atmosphere Model (WAM) simulations. Geophys Res Lett 36:L07108. http://doi:10.1029/2009GL037759 CrossRefGoogle Scholar
  2. Arduini C, Laneve G, Herrero FA (1997) Local time and altitude variation of equatorial thermosphere midnight density maximum (MDM): San Marco drag balance measurements. Geophys Res Lett 24:377–380CrossRefGoogle Scholar
  3. Colerico MJ, Mendillo M (2002) The current state of investigations regarding the thermospheric midnight temperature maximum (MTM). J Atmos Solar-Terr Phys 64:1361–1369CrossRefGoogle Scholar
  4. Faivre M, Meriwether J, Fesen CG, Biondi MA (2006) Climatology of the midnight temperature maximum phenomenon at Arequipa, Peru. J Geophys Res 111:A06302. http://doi:10.1029/2005JA011321 CrossRefGoogle Scholar
  5. Fesen CG (1996) Simulation of the low-latitude midnight temperature maximum. J Geophys Res 101:26,863–26,874CrossRefGoogle Scholar
  6. Fesen CG, Dickinson RE, Roble RG (1986) Simulation of the thermospheric tides at equinox with the National Center for Atmospheric Research Thermospheric General Circulation Model. J Geophys Res 91:4471–4489CrossRefGoogle Scholar
  7. Fujiwara H, Miyoshi Y (2006) Characteristics of the large-scale traveling atmospheric disturbances during geomagnetically quiet and disturbed periods simulated by a whole atmosphere general circulation model. Geophys Res Lett 33:L20108. http://doi:10.1029/2006GL027103 CrossRefGoogle Scholar
  8. Fujiwara H, Miyoshi Y (2010) Morphological features and variations of temperature in the upper thermosphere simulated by a whole atmosphere GCM. Ann Geophys 25:427–437CrossRefGoogle Scholar
  9. Fuller-Rowell TJ, Evans DS (1987) Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS-NOAA satellite data. J Geophys Res 92:7606–7618CrossRefGoogle Scholar
  10. Hedin AE, Mayr HG (1973) Magnetic control of the near equatorial neutral thermosphere. J Geophys Res 78:1688–1691CrossRefGoogle Scholar
  11. Herrero FA, Mayr HG, Spencer NW (1983) Latitudinal (seasonal) variation in the thermospheric midnight temperature maximum: a tidal analysis. J Geophys Res 88:7225–7235CrossRefGoogle Scholar
  12. Herrero FA, Spencer NW, Mayr HG (1993) Thermosphere and F-region plasma dynamics in the equatorial region. Adv Space Res 13:201–220CrossRefGoogle Scholar
  13. Jin H, Miyoshi Y, Fujiwara H, Shinagawa H (2008) Electrodynamics of the formation of ionospheric wave number 4 longitudinal structure. J Geophys Res 113:A09307. http://doi:10.1029/2008JA013301 CrossRefGoogle Scholar
  14. Kanamitsu M, Tada K, Kudo T, Sato N, Isa S (1983) Description of the JMA operational spectral model. J Meteorol Soc Japan 61:812–828Google Scholar
  15. Meriwether J, Faivre M, Fesen C, Sherwood P, Veliz O (2008) New results on equatorial thermospheric winds and the midnight temperature maximum. Ann Geophys 26:447–466CrossRefGoogle Scholar
  16. Liu H, Lühr H, Henize V, Köhler W (2005) Global distribution of the thermospheric total mass density derived from CHAMP. J Geophys Res 110:A04301. http://doi:10.1029/2004JA010741 CrossRefGoogle Scholar
  17. Liu H, Lühr H, Watanabe S (2007) Climatology of the equatorial thermospheric mass density anomaly. J Geophys Res 112:A05305. http://doi:10.1029/2006JA012199 CrossRefGoogle Scholar
  18. Mayr HG, Harris I, Spencer NW, Hedin AE, Wharton LE, Porter HS, Walker JCG, Carlson CH Jr (1979) Tides and the midnight temperature anomaly in the thermosphere. Geophys Res Lett 6:447–450CrossRefGoogle Scholar
  19. Miyahara S, Yoshida Y, Miyoshi Y (1993) Dynamic coupling between the lower and upper atmosphere by tides and gravity waves. J Atmos Solar-Terr Phys 55:1039–1053CrossRefGoogle Scholar
  20. Miyoshi Y (1999) Numerical simulation of the 5-day and 16-day waves in the mesopause region. Earth Planets Space 51:763–772Google Scholar
  21. Miyoshi Y, Fujiwara H (2003) Day-to-day variations of migrating diurnal tide simulated by a GCM from the ground surface to the exobase. Geophys Res Lett 30:1789. http://doi:10.1029/2003GL017695 CrossRefGoogle Scholar
  22. Miyoshi Y, Fujiwara H (2006) Excitation mechanism of intraseasonal oscillation in the equatorial mesosphere and lower thermosphere. J Geophys Res 111:D14108. http://doi:10.1029/2005JD006993 CrossRefGoogle Scholar
  23. Miyoshi Y, Fujiwara H (2008) Gravity waves in the thermosphere simulated by a general circulation model. J Geophys Res 113:D01101. http://doi:10.1029/2007JD008874 CrossRefGoogle Scholar
  24. Philbrick CR, McIsaac JP (1972) Measurements of atmospheric composition near 400 km. Space Res 12:743–750Google Scholar
  25. Rao HNR, Sastri JH (1994) Characteristics of the equatorial midnight temperature maximum in the Indian sector. Ann Geophys 12:276–278CrossRefGoogle Scholar
  26. Roble RG, Ridley EC (1987) An auroral model for the NCAR thermospheric general circulation model (TGCM). Ann Geophys 54:369–382Google Scholar
  27. Volland H (1975) Models of the global electric fields within the magnetosphere. Ann Geophys 31:159–173Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Hitoshi Fujiwara
    • 1
    Email author
  • Yasunobu Miyoshi
    • 2
  • Hidekatsu Jin
    • 3
  • Hiroyuki Shinagawa
    • 3
  • Kaori Terada
    • 1
  1. 1.Department of GeophysicsTohoku UniversitySendaiJapan
  2. 2.Department of Earth and Planetary SciencesKyushu UniversityFukuokaJapan
  3. 3.National Institute of Information and Communications TechnologyTokyoJapan

Personalised recommendations