Radar and Optical Observations of Irregular Midlatitude Sporadic E Layers Beneath MSTIDs

  • David L. HysellEmail author
  • Tatsuhiro Yokoyama
  • Elnana Nossa
  • Russell B. Hedden
  • Miguel F. Larsen
  • John Munro
  • Steven Smith
  • Michael P. Sulzer
  • Sixto A. González
Part of the IAGA Special Sopron Book Series book series (IAGA, volume 2)


An irregular sporadic E ionization layer was observed by the Arecibo incoherent scatter radar and a coherent scatter radar imager located on St. Croix during the passage of an MSTID observed by the Boston University all-sky camera in 630 nm imagery. The MSTID in question was not very intense and was barely detectable in the vertical F region plasma drifts measured by Arecibo. The intensity of the coherent scatter from small-scale irregularities in the sporadic E layer appeared nonetheless to be modulated by the MSTID and was strongest in the F region airglow crests, mapped along magnetic field lines to the E region volume being observed. The coherent scatter Doppler shifts were highly correlated with altitude displacements in the sporadic E layer, and the sign of the correlation was controlled by the sign of the background zonal electric field. The MSTID did not appear to modulate the morphology of the sporadic E layer irregularities themselves, which took the form of convective rolls and which drifted with the ambient neutral wind.


Doppler Shift Hall Conductivity Neutral Wind Convective Roll Plasma Drift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by awards ATM-0541526 and ATM-0541593 from the National Science Foundation to Cornell University, Clemson University, and the University of the Virgin Islands. The Arecibo Observatory is part of the National Astronomy and Ionosphere Center, which is operated by Cornell University under a cooperative agreement with the National Science Foundation. We appreciate the assistance of the USDA in hosting the St. Croix radar.


  1. Behnke RA (1979) F layer height bands in the nocturnal ionosphere over Arecibo. J Geophys Res 84:974CrossRefGoogle Scholar
  2. Chu YH, Wang CY (1997) Interferometry observations of 3-dimensional spatial structures of sporadic E using the Chung-Li VHF radar. Radio Sci 32(2):817–832CrossRefGoogle Scholar
  3. Cosgrove RB (2007a) Wavelength dependence of the linear growth rate of the Es layer instability. Ann Geophys 25:1311–1322CrossRefGoogle Scholar
  4. Cosgrove RB (2007b) Generation of mesoscale F layer structure and electric fields by the combined Perkins and Es layer instabilities, in simulations. Ann Geophys 25:1579–1601CrossRefGoogle Scholar
  5. Cosgrove RB, Tsunoda RT (2002) A direction-dependent instability of sporadic- E layers in the nighttime midlatitude ionosphere. Geophys Res Lett 29(18):1864. doi:10.1029/2002JA009,728CrossRefGoogle Scholar
  6. Cosgrove RB, Tsunoda RT (2004) Instability of the E–F coupled nighttime midlatitude ionosphere. J Geophys Res 109.doi:10.1029/2003JA010,243Google Scholar
  7. Dimant YS, Oppenheim MM, Milikh GM (2009) Meteor plasma trails: effects of external electric field. Ann Geophys 27:279–296CrossRefGoogle Scholar
  8. Fukao S, Kelley MC, Shirakawa T, Takami T, Yamamoto M, Tsuda T, Kato S (1991) Turbulent upwelling of the midlatitude ionosphere, 1. Observational results by the MU radar. J Geophys Res 96:3725–3746Google Scholar
  9. Fukao S, Yamamoto M, Tsunoda RT, Hayakawa H, Mukai T (1998) The SEEK (Sporadic-E Experiment over Kyushu) campaign. Geophys Res Lett 25:1761CrossRefGoogle Scholar
  10. Garcia FJ, Kelley MC, Makela JJ, Huang CS (2000) Airglow observations of mesoscale low-velocity traveling ionospheric disturbances at midlatitudes. J Geophys Res 105:18407–18415CrossRefGoogle Scholar
  11. Haldoupis C, Schlegel K (1994) Observation of the modified two-stream plasma instability in the midlatitude E region ionosphere. J Geophys Res 99:6219CrossRefGoogle Scholar
  12. Hamza A (1999) Perkins instability revisited. J Geophys Res 104:22567–22575CrossRefGoogle Scholar
  13. Hysell DL, Burcham J (2000) The 30 MHz radar interferometer studies of midlatitude E region irregularities. J Geophys Res 105:12797CrossRefGoogle Scholar
  14. Hysell DL, Drexler J (2006) Polarization of E region plasma irregularities. Radio Sci 41:RS4015. doi:10.1029/2005RS003,424CrossRefGoogle Scholar
  15. Hysell DL, Larsen MF, Zhou QH (2004) Common volume coherent and incoherent scatter radar observations of mid-latitude sporadic E-layers and QP echoes. Ann Geophys 22:3277–3290CrossRefGoogle Scholar
  16. Hysell DL, Nossa E, Larsen MF, Munro J, Sulzer MP, Aponte N, González SA (2009) Sporadic E layer observations over Arecibo using coherent and incoherent scatter radar: assessing dynamic stability in the lower thermosphere. J Geophys Res 114:A12303. doi:10.1029/2009JA014,403Google Scholar
  17. Hysell DL, Yamamoto M, Fukao S (2002a) Simulations of plasma clouds in the midlatitude E region ionosphere with implications for type I and type II quasiperiodic echoes. J Geophys Res 107:1313CrossRefGoogle Scholar
  18. Hysell DL, Yamamoto M, Fukao S (2002b) Imaging radar observations and theory of type I and type II quasiperiodic echoes. J Geophys Res 107:1360CrossRefGoogle Scholar
  19. Larsen MF (2000) A shear instability seeding mechanism for quasi-periodic radar echoes. J Geophys Res 105(A11):24931–24940CrossRefGoogle Scholar
  20. Larsen MF, Hysell DL, Zhou QH, Smith SM, Friedman J, Bishop RL (2007) Imaging coherent scatter radar, incoherent scatter radar, and optical observations of quasiperiodic structures associated with sporadic E layers. J Geophys Res 112:A06321. doi:10.1029/2006JA012,051CrossRefGoogle Scholar
  21. Mathews JD (1998) Sporadic E: Current views and recent progress. J Atmos Solar-Terr Phys 60:413CrossRefGoogle Scholar
  22. Miller CA (1996) On gravity waves and the electrodynamics of the mid-latitude ionosphere. Ph.D. thesis, Cornell University, Ithaca, NYGoogle Scholar
  23. Miller CA, Swartz WE, Kelley MC, Mendillo M, Notingham D, Scali J, Reinisch B (1997) Electrodynamics of midlatitude spread F, 1. Observations of unstable gravity wave-induced ionospheric electric fields at tropical latitudes. J Geophys Res 102:11521–11532CrossRefGoogle Scholar
  24. Miller KL, Smith LG (1978) Incoherent scatter radar observations of irregular structure in mid-latitude sporadic E layers. J Geophys Res 83:3761CrossRefGoogle Scholar
  25. Otsuka Y, Onoma F, Shiokawa K, Ogawa T, Yamamoto M, Fukao S (2007) Simultaneous observations of nighttime medium-scale traveling ionospheric disturbances and E region field-aligned irregularities at midlatitudes. J Geophys Res 112:A06317. doi:10.1029/2005JA011,548CrossRefGoogle Scholar
  26. Otsuka Y, Shiokawa K, Ogawa T, Yokoyama T, Yamamoto M (2009) Spatial relationship of nighttime medium-scale traveling ionospheric disturbances and F region field-aligned irregularities observed with two spaced all-sky airglow imagers and the middle and upper atmosphere radar. J Geophys Res 114:A05302. doi:10.1029/2008JA013,902CrossRefGoogle Scholar
  27. Otsuka Y, Shiokawa K, Ogawa T, Yokoyama T, Yamamoto M, Fukao S (2004) Spatial relationship of equatorial plasma bubbles and field-aligned irregularities observed with an allsky airglow imager and the equatorial atmosphere radar. Geophys Res Lett 31:L20802. doi:10.1029/2004GL020,869CrossRefGoogle Scholar
  28. Perkins F (1973) Spread F and ionospheric currents. J Geophys Res 78:218CrossRefGoogle Scholar
  29. Riggin D, Swartz WE, Providakes J, Farley DT (1986) Radar studies of long-wavelength waves associated with mid-latitude sporadic E layers. J Geophys Res 91:8011CrossRefGoogle Scholar
  30. Saito A, Fukao S, Miyazaki S (1998) High resolution mapping of TEC perturbations with the GSI GPS network over Japan. Geophys Res Lett 25:3079CrossRefGoogle Scholar
  31. Saito A, Nishimura M, Yamamoto M, Fukao S, Tsugawa T, Otsuka Y, Miyazaki S, Kelley MC (2002) Observations of traveling ionospheric disturbances and 3-m scale irregularities in the nighttime F-region ionosphere with the MU radar and a GPS network. Earth Planets Space 54:31–44Google Scholar
  32. Saito S, Yamamoto M, Hashiguchi H (2008) Imaging observations of nighttime mid-latitude F region field-aligned irregularities by an MU radar ultra-multi-channel system. Ann Geophys 26:2345–2352CrossRefGoogle Scholar
  33. Saito S, Yamamoto M, Hashiguchi H, Maegawa A (2006) Observation of threedimensional signatures of quasi-periodic echoes associated with mid-latitude sporadic-E layers by MU radar ultra-multi-channel system. Geophys Res Lett 33:L14109. doi:10.1029/2005GL025,526CrossRefGoogle Scholar
  34. Saito S, Yamamoto M, Hashiguchi H, Maegawa A, Saito A (2007) Observational evidence of coupling between quasi-periodic echoes and medium-scale traveling ionospheric disturbances. Ann Geophys 25:2185–2194CrossRefGoogle Scholar
  35. Shalimov S, Haldoupis C, Schlegel K (1998) Large polarization electric fields associated with midlatitude sporadic E. J Geophys Res 103:11617CrossRefGoogle Scholar
  36. Smith LG, Miller KL (1980) Sporadic-layers and unstable wind shears. J Atmos Solar-Terr Phys 42:45CrossRefGoogle Scholar
  37. St.-Maurice JP, Hamza AM (2001) A new nonlinear approach to the theory of E region irregularities. J Geophys Res 106:1751Google Scholar
  38. Sulzer MP (1986a) A phase modulation technique for a sevenfold statistical improvement in incoherent scatter data-taking. Radio Sci 21:737CrossRefGoogle Scholar
  39. Sulzer MP (1986b) A radar technique for high range resolution incoherent scatter autocorrelation function measurements utilizing the full average power of klystron radars. Radio Sci 21:1033–1040CrossRefGoogle Scholar
  40. Sulzer MP, Aponte N, González SA (2005) Application of linear regularization methods to Arecibo vector velocities. J Geophys Res 110(A10). doi:10.1029/2005JA011,042Google Scholar
  41. Tsugawa T, Otsuka Y, Coster AJ, Saito A (2007) Medium-scale traveling ionospheric disturbances detected with dense and wide TEC maps over North America. Geophys Res Lett 34:L22101. doi:10.1029/2007GL031,663CrossRefGoogle Scholar
  42. Tsunoda RT (2006) On the coupling of layer instabilities in the nighttime midlatitude ionosphere. J Geophys Res 111:A11304. doi:10.1029/JA011,630CrossRefGoogle Scholar
  43. Whitehead JD (1972) The structure of sporadic E from a radio experiment. Radio Sci 7:355CrossRefGoogle Scholar
  44. Whitehead JD (1989) Recent work on mid-latitude and equatorial sporadic E. J Atmos Solar-Terr Phys 51:401CrossRefGoogle Scholar
  45. Yamamoto M, Fukao S, Ogawa T, Tsuda T, Kato S (1992) A morphological study of midlatitude E-region field-aligned irregularities observed with the MU radar. J Atmos Solar-Terr Phys 54:769CrossRefGoogle Scholar
  46. Yamamoto M, Fukao S, Tsunoda RT, Pfaff R, Hayakawa H (2005) SEEK-2 (Sporadic-E Experiment over Kyushu 2) – Project outline. Ann Geophys 23:2295–2305CrossRefGoogle Scholar
  47. Yamamoto M, Fukao S, Woodman RF, Ogawa T, Tsuda T, Kato K (1991) Mid-latitude E region field-aligned irregularities observed with the MU radar. J Geophys Res 96:15943CrossRefGoogle Scholar
  48. Yokoyama T, Otsuka Y, Ogawa T, Yamamoto M, Hysell DL (2008) First three-dimensional simulation of the Perkins instability in the nighttime midlatitude ionosphere. Geophys Res Lett 35:L03101. doi:10.1029/2007GL032,496CrossRefGoogle Scholar
  49. Yokoyama T, Otsuka Y, Ogawa T, Yamamoto M, Hysell DL (2009) Three-dimensional simulation of the coupled Perkins and Es layer instabilities in the nighttime midlatitude ionosphere. J Geophys Res 114:A03308. doi:10.1029/2008JA013,789CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • David L. Hysell
    • 1
    Email author
  • Tatsuhiro Yokoyama
    • 2
  • Elnana Nossa
    • 3
  • Russell B. Hedden
    • 4
  • Miguel F. Larsen
    • 5
  • John Munro
    • 6
  • Steven Smith
    • 7
  • Michael P. Sulzer
    • 8
  • Sixto A. González
    • 8
  1. 1.Department of Earth and Atmospheric SciencesCornell UniversityIthacaUSA
  2. 2.Nasa Goddard Space Flight CenterGreenbeltUSA
  3. 3.Department of Earth and Atmospheric SciencesFormerly at Cornell University, Cornell UniversityIthacaUSA
  4. 4.Department of Earth and Atmospheric SciencesCornell UniversityIthacaUSA
  5. 5.Department of Physics and AstronomyClemson UniversityClemsonUSA
  6. 6.University of the Virgin IslandsKingshillUSVI
  7. 7.Center for Space PhysicsBoston UniversityBostonUSA
  8. 8.Arecibo ObservatoryAreciboUSA

Personalised recommendations